Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Jun;4(6):567-578. doi: 10.1016/j.bpsc.2018.11.013. Epub 2018 Dec 19.
The neuroanatomical basis of autism spectrum disorder (ASD) has remained elusive, mostly owing to high biological and clinical heterogeneity among diagnosed individuals. Despite considerable effort toward understanding ASD using neuroimaging biomarkers, heterogeneity remains a barrier, partly because studies mostly employ case-control approaches, which assume that the clinical group is homogeneous.
Here, we used an innovative normative modeling approach to parse biological heterogeneity in ASD. We aimed to dissect the neuroanatomy of ASD by mapping the deviations from a typical pattern of neuroanatomical development at the level of the individual and to show the necessity to look beyond the case-control paradigm to understand the neurobiology of ASD. We first estimated a vertexwise normative model of cortical thickness development using Gaussian process regression, then mapped the deviation of each participant from the typical pattern. For this, we employed a heterogeneous cross-sectional sample of 206 typically developing individuals (127 males) and 321 individuals with ASD (232 males) (6-31 years of age).
We found few case-control differences, but the ASD cohort showed highly individualized patterns of deviations in cortical thickness that were widespread across the brain. These deviations correlated with severity of repetitive behaviors and social communicative symptoms, although only repetitive behaviors survived corrections for multiple testing.
Our results 1) reinforce the notion that individuals with ASD show distinct, highly individualized trajectories of brain development and 2) show that by focusing on common effects (i.e., the "average ASD participant"), the case-control approach disguises considerable interindividual variation crucial for precision medicine.
自闭症谱系障碍(ASD)的神经解剖学基础仍然难以捉摸,主要是由于诊断个体之间存在较高的生物学和临床异质性。尽管使用神经影像学生物标志物在理解 ASD 方面付出了相当大的努力,但异质性仍然是一个障碍,部分原因是研究大多采用病例对照方法,该方法假设临床组是同质的。
在这里,我们使用了一种创新的规范建模方法来解析 ASD 中的生物学异质性。我们旨在通过在个体水平上绘制偏离典型神经解剖发育模式的方式来剖析 ASD 的神经解剖结构,并表明有必要超越病例对照范式来理解 ASD 的神经生物学。我们首先使用高斯过程回归估计了皮质厚度发育的顶点规范模型,然后映射了每个参与者偏离典型模式的情况。为此,我们使用了一个 206 名正常发育个体(127 名男性)和 321 名 ASD 个体(232 名男性)(6-31 岁)的异质横断面样本。
我们发现很少有病例对照差异,但 ASD 组显示出皮质厚度的高度个体化偏差模式,这些偏差模式广泛存在于大脑中。这些偏差与重复行为和社交沟通症状的严重程度相关,尽管只有重复行为在经过多次测试校正后仍然存在。
我们的结果 1)强化了这样一种观点,即 ASD 个体表现出独特的、高度个体化的大脑发育轨迹,2)表明通过关注常见效应(即“平均 ASD 参与者”),病例对照方法掩盖了对精准医学至关重要的相当大的个体间变异。