Suppr超能文献

用于在ABIDE数据集上预测自闭症的机器学习分类器比较与解释框架。

A Framework for Comparison and Interpretation of Machine Learning Classifiers to Predict Autism on the ABIDE Dataset.

作者信息

Dong Yilan, Batalle Dafnis, Deprez Maria

机构信息

School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

出版信息

Hum Brain Mapp. 2025 Apr 1;46(5):e70190. doi: 10.1002/hbm.70190.

Abstract

Autism is a neurodevelopmental condition affecting ~1% of the population. Recently, machine learning models have been trained to classify participants with autism using their neuroimaging features, though the performance of these models varies in the literature. Differences in experimental setup hamper the direct comparison of different machine-learning approaches. In this paper, five of the most widely used and best-performing machine learning models in the field were trained to classify participants with autism and typically developing (TD) participants, using functional connectivity matrices, structural volumetric measures, and phenotypic information from the Autism Brain Imaging Data Exchange (ABIDE) dataset. Their performance was compared under the same evaluation standard. The models implemented included: graph convolutional networks (GCN), edge-variational graph convolutional networks (EV-GCN), fully connected networks (FCN), autoencoder followed by a fully connected network (AE-FCN) and support vector machine (SVM). Our results show that all models performed similarly, achieving a classification accuracy around 70%. Our results suggest that different inclusion criteria, data modalities, and evaluation pipelines rather than different machine learning models may explain variations in accuracy in the published literature. The highest accuracy in our framework was obtained when using ensemble models (p < 0.001), leading to an accuracy of 72.2% and AUC = 0.77 using GCN classifiers. However, an SVM classifier performed with an accuracy of 70.1% and AUC = 0.77, just marginally below GCN, and significant differences were not found when comparing different algorithms under the same testing conditions (p > 0.05). Furthermore, we also investigated the stability of features identified by the different machine learning models using the SmoothGrad interpretation method. The FCN model demonstrated the highest stability in selecting relevant features contributing to model decision making. The code is available at https://github.com/YilanDong19/Machine-learning-with-ABIDE.

摘要

自闭症是一种神经发育疾病,影响着约1%的人口。最近,人们训练了机器学习模型,以利用神经影像特征对自闭症患者进行分类,不过这些模型的表现在文献中各有不同。实验设置的差异阻碍了不同机器学习方法之间的直接比较。在本文中,我们训练了该领域中使用最广泛且性能最佳的五种机器学习模型,利用功能连接矩阵、结构体积测量以及来自自闭症脑成像数据交换(ABIDE)数据集的表型信息,对自闭症患者和典型发育(TD)参与者进行分类。在相同的评估标准下比较了它们的性能。所实现的模型包括:图卷积网络(GCN)、边缘变分图卷积网络(EV-GCN)、全连接网络(FCN)、自动编码器后跟全连接网络(AE-FCN)以及支持向量机(SVM)。我们的结果表明,所有模型的表现相似,分类准确率约为70%。我们的结果表明,不同的纳入标准、数据模态和评估流程而非不同的机器学习模型,可能是已发表文献中准确率存在差异的原因。在我们的框架中,使用集成模型时获得了最高准确率(p < 0.001),使用GCN分类器时准确率达到72.2%,曲线下面积(AUC) = 0.77。然而,SVM分类器的准确率为70.1%,AUC = 0.77,略低于GCN,并且在相同测试条件下比较不同算法时未发现显著差异(p > 0.05)。此外,我们还使用SmoothGrad解释方法研究了不同机器学习模型识别出的特征的稳定性。FCN模型在选择有助于模型决策的相关特征方面表现出最高的稳定性。代码可在https://github.com/YilanDong19/Machine-learning-with-ABIDE获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cff/11912182/6ef1047801bb/HBM-46-e70190-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验