Suppr超能文献

通过金属芯的连续断裂来增强可拉伸纤维。

Toughening stretchable fibers via serial fracturing of a metallic core.

作者信息

Cooper Christopher B, Joshipura Ishan D, Parekh Dishit P, Norkett Justin, Mailen Russell, Miller Victoria M, Genzer Jan, Dickey Michael D

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.

Department of Materials Science Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.

出版信息

Sci Adv. 2019 Feb 22;5(2):eaat4600. doi: 10.1126/sciadv.aat4600. eCollection 2019 Feb.

Abstract

Tough, biological materials (e.g., collagen or titin) protect tissues from irreversible damage caused by external loads. Mimicking these protective properties is important in packaging and in emerging applications such as durable electronic skins and soft robotics. This paper reports the formation of tough, metamaterial-like core-shell fibers that maintain stress at the fracture strength of a metal throughout the strain of an elastomer. The shell experiences localized strain enhancements that cause the higher modulus core to fracture repeatedly, increasing the energy dissipated during extension. Normally, fractures are catastrophic. However, in this architecture, the fractures are localized to the core. In addition to dissipating energy, the metallic core provides electrical conductivity and enables repair of the fractured core for repeated use. The fibers are 2.5 times tougher than titin and hold more than 15,000 times their own weight for a period 100 times longer than a hollow elastomeric fiber.

摘要

坚韧的生物材料(如胶原蛋白或肌联蛋白)可保护组织免受外部负荷造成的不可逆损伤。在包装以及诸如耐用电子皮肤和软体机器人等新兴应用中,模仿这些保护特性非常重要。本文报道了一种坚韧的、类似超材料的核壳纤维的形成,这种纤维在弹性体的整个应变过程中,能在金属的断裂强度下保持应力。外壳会经历局部应变增强,从而导致较高模量的内核反复断裂,增加拉伸过程中耗散的能量。通常情况下,断裂是灾难性的。然而,在这种结构中,断裂局限于内核。除了耗散能量外,金属内核还提供导电性,并能修复断裂的内核以便重复使用。这些纤维的韧性是肌联蛋白的2.5倍,能承受超过自身重量15000倍的重量,且持续时间比中空弹性体纤维长100倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e50/6386561/9a2afdf7d3eb/aat4600-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验