Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
Adv Mater. 2018 Apr;30(16):e1706885. doi: 10.1002/adma.201706885. Epub 2018 Mar 13.
Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water-swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites. Here, a simple yet versatile method is introduced to create "macroscale" hydrogel composites, by utilizing a rigid reinforcing phase that can relieve stress-induced deformation. A low-melting-point alloy that can transform from a load-bearing solid state to a free-deformable liquid state at relatively low temperature is used as a reinforcing skeleton, which enables the release of any swelling mismatch, regardless of the matrix swelling degree in liquid media. This design can generally provide hydrogels with hybridized functions, including excellent mechanical properties, shape memory, and thermal healing, which are often difficult or impossible to achieve with single-component hydrogel systems. Furthermore, this technique enables controlled electrochemical reactions and channel-structure templating in hydrogel matrices. This work may play an important role in the future design of soft robots, wearable electronics, and biocompatible functional materials.
用刚性支架增强水凝胶是一种很有前途的方法,可以大大扩展水凝胶的机械和物理性能。在创建水凝胶复合材料时,面临的挑战之一是由于水凝胶基质在水介质中与刚性骨架之间的溶胀失配而产生的显著应力。这种应力会导致物理变形(起皱、翘曲或断裂),从而阻止了坚固复合材料的制造。在这里,介绍了一种简单而通用的方法,可以通过利用能够缓解应力诱导变形的刚性增强相来制造“宏观”水凝胶复合材料。使用低熔点合金作为增强骨架,它可以从承载固体状态转变为相对较低温度下的自由可变形液体状态,从而释放任何溶胀失配,无论在液体介质中基质的溶胀程度如何。这种设计通常可以为水凝胶提供混合功能,包括优异的机械性能、形状记忆和热修复功能,而这些功能通常很难或不可能通过单一成分的水凝胶系统来实现。此外,该技术还可以在水凝胶基质中实现受控的电化学反应和通道结构模板化。这项工作可能在未来设计软机器人、可穿戴电子产品和生物相容的功能材料方面发挥重要作用。