Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania 19129.
Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania 19129
J Neurosci. 2019 May 15;39(20):3792-3811. doi: 10.1523/JNEUROSCI.3099-18.2019. Epub 2019 Feb 25.
KIFC1 (also called HSET or kinesin-14a) is best known as a multifunctional motor protein essential for mitosis. The present studies are the first to explore KIFC1 in terminally postmitotic neurons. Using RNA interference to partially deplete KIFC1 from rat neurons (from animals of either gender) in culture, pharmacologic agents that inhibit KIFC1, and expression of mutant KIFC1 constructs, we demonstrate critical roles for KIFC1 in regulating axonal growth and retraction as well as growth cone morphology. Experimental manipulations of KIFC1 elicit morphological changes in the axon as well as changes in the organization, distribution, and polarity orientation of its microtubules. Together, the results indicate a mechanism by which KIFC1 binds to microtubules in the axon and slides them into alignment in an ATP-dependent fashion and then cross-links them in an ATP-independent fashion to oppose their subsequent sliding by other motors. Here, we establish that KIFC1, a molecular motor well characterized in mitosis, is robustly expressed in neurons, where it has profound influence on the organization of microtubules in a number of different functional contexts. KIFC1 may help answer long-standing questions in cellular neuroscience such as, mechanistically, how growth cones stall and how axonal microtubules resist forces that would otherwise cause the axon to retract. Knowledge about KIFC1 may help researchers to devise strategies for treating disorders of the nervous system involving axonal retraction given that KIFC1 is expressed in adult neurons as well as developing neurons.
KIFC1(也称为 HSET 或 kinesin-14a)是一种多功能的马达蛋白,在有丝分裂中是必不可少的。目前的研究首次探索了 KIFC1 在终末有丝分裂后的神经元中的作用。通过 RNA 干扰技术从培养的大鼠神经元(来自雄性或雌性动物)中部分耗尽 KIFC1,使用抑制 KIFC1 的药物和表达突变的 KIFC1 构建体,我们证明了 KIFC1 在调节轴突生长和回缩以及生长锥形态方面起着关键作用。KIFC1 的实验操作会引起轴突的形态变化,以及其微管的组织、分布和极性取向的变化。总之,这些结果表明了一种机制,即 KIFC1 结合到轴突中的微管上,并以 ATP 依赖的方式将它们滑动对齐,然后以 ATP 非依赖的方式将它们交联,以阻止其他马达随后的滑动。在这里,我们确定了 KIFC1,一种在有丝分裂中得到很好描述的分子马达,在神经元中得到了强烈的表达,它对许多不同功能背景下微管的组织有深远的影响。KIFC1 可能有助于回答细胞神经科学中的长期问题,例如,生长锥停滞的机制,以及轴突微管如何抵抗否则会导致轴突回缩的力。鉴于 KIFC1 在成年神经元和发育中的神经元中表达,了解 KIFC1 的知识可能有助于研究人员设计治疗涉及轴突回缩的神经系统疾病的策略。