Braun Marcus, Lansky Zdenek, Szuba Agata, Schwarz Friedrich W, Mitra Aniruddha, Gao Mengfei, Lüdecke Annemarie, Ten Wolde Pieter Rein, Diez Stefan
B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Nat Chem Biol. 2017 Dec;13(12):1245-1252. doi: 10.1038/nchembio.2495. Epub 2017 Oct 16.
Microtubule-crosslinking motor proteins, which slide antiparallel microtubules, are required for the remodeling of microtubule networks. Hitherto, all microtubule-crosslinking motors have been shown to slide microtubules at a constant velocity until no overlap remains between them, leading to the breakdown of the initial microtubule geometry. Here, we show in vitro that the sliding velocity of microtubules, driven by human kinesin-14 HSET, decreases when microtubules start to slide apart, resulting in the maintenance of finite-length microtubule overlaps. We quantitatively explain this feedback using the local interaction kinetics of HSET with overlapping microtubules that cause retention of HSET in shortening overlaps. Consequently, the increased HSET density in the overlaps leads to a density-dependent decrease in sliding velocity and the generation of an entropic force that antagonizes the force exerted by the motors. Our results demonstrate that a spatial arrangement of microtubules can regulate the collective action of molecular motors through the local alteration of their individual interaction kinetics.
微管交联运动蛋白可使反平行微管滑动,是微管网络重塑所必需的。迄今为止,所有微管交联运动蛋白都被证明能以恒定速度滑动微管,直到它们之间不再有重叠,导致初始微管结构瓦解。在此,我们在体外实验中表明,由人类驱动蛋白-14 HSET驱动的微管滑动速度,在微管开始分开滑动时会降低,从而维持有限长度的微管重叠。我们利用HSET与重叠微管的局部相互作用动力学定量解释了这种反馈,这种相互作用导致HSET在缩短的重叠区域中保留。因此,重叠区域中HSET密度的增加导致滑动速度随密度降低,并产生一种对抗运动蛋白所施加力的熵力。我们的结果表明,微管的空间排列可通过局部改变分子运动蛋白的个体相互作用动力学来调节其集体作用。