Suppr超能文献

次氯酸生成电化学支架治疗伤口生物膜。

Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms.

机构信息

The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.

The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.

出版信息

Sci Rep. 2019 Feb 25;9(1):2683. doi: 10.1038/s41598-019-38968-y.

Abstract

Biofilm formation causes prolonged wound infections due to the dense biofilm structure, differential gene regulation to combat stress, and production of extracellular polymeric substances. Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa are three difficult-to-treat biofilm-forming bacteria frequently found in wound infections. This work describes a novel wound dressing in the form of an electrochemical scaffold (e-scaffold) that generates controlled, low concentrations of hypochlorous acid (HOCl) suitable for killing biofilm communities without substantially damaging host tissue. Production of HOCl near the e-scaffold surface was verified by measuring its concentration using needle-type microelectrodes. E-scaffolds producing 17, 10 and 7 mM HOCl completely eradicated S. aureus, A. baumannii, and P. aeruginosa biofilms after 3 hours, 2 hours, and 1 hour, respectively. Cytotoxicity and histopathological assessment showed no discernible harm to host tissues when e-scaffolds were applied to explant biofilms. The described strategy may provide a novel antibiotic-free strategy for treating persistent biofilm-associated infections, such as wound infections.

摘要

生物膜的形成会导致伤口感染迁延不愈,这是由于生物膜致密的结构、差异化的基因调控以应对压力,以及细胞外聚合物的产生。鲍曼不动杆菌、金黄色葡萄球菌和铜绿假单胞菌是三种常见的生物膜形成细菌,它们常存在于伤口感染中,难以治疗。本研究介绍了一种新型的电化学支架(e-scaffold)形式的伤口敷料,它可以产生受控的、低浓度的次氯酸(HOCl),适合杀死生物膜群落,而不会对宿主组织造成实质性损伤。通过使用针型微电极测量其浓度,验证了 e-scaffold 表面附近产生的 HOCl。产生 17、10 和 7mM HOCl 的 e-scaffold 分别在 3、2 和 1 小时后完全清除了金黄色葡萄球菌、鲍曼不动杆菌和铜绿假单胞菌的生物膜。细胞毒性和组织病理学评估表明,当 e-scaffold 应用于离体生物膜时,宿主组织没有明显的损伤。所描述的策略可能为治疗持续性生物膜相关感染(如伤口感染)提供一种新型的、无需使用抗生素的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9123/6389966/a2a65be7dae5/41598_2019_38968_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验