Woods Grace A, Rommelfanger Nicholas J, Hong Guosong
Department of Applied Physics, Stanford University, Stanford, California, 94305, USA.
Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA.
Matter. 2020 Oct 7;3(4):1087-1113. doi: 10.1016/j.matt.2020.08.002.
The success of neural interfaces relies on their long-term stability and large scale in interrogating and manipulating neural activity after implantation. Conventional neural probes, owing to their limited spatiotemporal resolution and scale, face challenges for studying the massive, interconnected neural network in its native state. In this review, we argue that taking inspiration from biology will unlock the next generation of bioelectronic neural interfaces. Reducing the feature sizes of bioelectronic neural interfaces to mimic those of neurons enables high spatial resolution and multiplexity. Additionally, chronic stability at the device-tissue interface is realized by matching the mechanical properties of bioelectronic neural interfaces to those of the endogenous tissue. Further, modeling the design of neural interfaces after the endogenous topology of the neural circuitry enables new insights into the connectivity and dynamics of the brain. Lastly, functionalization of neural probe surfaces with coatings inspired by biology leads to enhanced tissue acceptance over extended timescales. Bioinspired neural interfaces will facilitate future developments in neuroscience studies and neurological treatments by leveraging bidirectional information transfer and integrating neuromorphic computing elements.
神经接口的成功依赖于其长期稳定性以及植入后在询问和操纵神经活动方面的大规模应用。传统神经探针由于其有限的时空分辨率和规模,在研究天然状态下庞大的、相互连接的神经网络时面临挑战。在本综述中,我们认为从生物学中汲取灵感将开启下一代生物电子神经接口的发展。将生物电子神经接口的特征尺寸缩小以模仿神经元的特征尺寸,可实现高空间分辨率和多路复用。此外,通过使生物电子神经接口的机械性能与内源性组织的机械性能相匹配,可实现设备与组织界面的长期稳定性。此外,按照神经回路的内源性拓扑结构对神经接口进行设计建模,能够为大脑的连接性和动态性带来新的见解。最后,用受生物学启发的涂层对神经探针表面进行功能化处理,可在更长的时间尺度上提高组织的接受度。受生物启发的神经接口将通过利用双向信息传输和集成神经形态计算元件,促进神经科学研究和神经治疗的未来发展。