Suppr超能文献

用于生物电子神经接口的仿生材料。

Bioinspired Materials for Bioelectronic Neural Interfaces.

作者信息

Woods Grace A, Rommelfanger Nicholas J, Hong Guosong

机构信息

Department of Applied Physics, Stanford University, Stanford, California, 94305, USA.

Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA.

出版信息

Matter. 2020 Oct 7;3(4):1087-1113. doi: 10.1016/j.matt.2020.08.002.

Abstract

The success of neural interfaces relies on their long-term stability and large scale in interrogating and manipulating neural activity after implantation. Conventional neural probes, owing to their limited spatiotemporal resolution and scale, face challenges for studying the massive, interconnected neural network in its native state. In this review, we argue that taking inspiration from biology will unlock the next generation of bioelectronic neural interfaces. Reducing the feature sizes of bioelectronic neural interfaces to mimic those of neurons enables high spatial resolution and multiplexity. Additionally, chronic stability at the device-tissue interface is realized by matching the mechanical properties of bioelectronic neural interfaces to those of the endogenous tissue. Further, modeling the design of neural interfaces after the endogenous topology of the neural circuitry enables new insights into the connectivity and dynamics of the brain. Lastly, functionalization of neural probe surfaces with coatings inspired by biology leads to enhanced tissue acceptance over extended timescales. Bioinspired neural interfaces will facilitate future developments in neuroscience studies and neurological treatments by leveraging bidirectional information transfer and integrating neuromorphic computing elements.

摘要

神经接口的成功依赖于其长期稳定性以及植入后在询问和操纵神经活动方面的大规模应用。传统神经探针由于其有限的时空分辨率和规模,在研究天然状态下庞大的、相互连接的神经网络时面临挑战。在本综述中,我们认为从生物学中汲取灵感将开启下一代生物电子神经接口的发展。将生物电子神经接口的特征尺寸缩小以模仿神经元的特征尺寸,可实现高空间分辨率和多路复用。此外,通过使生物电子神经接口的机械性能与内源性组织的机械性能相匹配,可实现设备与组织界面的长期稳定性。此外,按照神经回路的内源性拓扑结构对神经接口进行设计建模,能够为大脑的连接性和动态性带来新的见解。最后,用受生物学启发的涂层对神经探针表面进行功能化处理,可在更长的时间尺度上提高组织的接受度。受生物启发的神经接口将通过利用双向信息传输和集成神经形态计算元件,促进神经科学研究和神经治疗的未来发展。

相似文献

4
Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.网格纳米电子学:电子与组织的无缝集成。
Acc Chem Res. 2018 Feb 20;51(2):309-318. doi: 10.1021/acs.accounts.7b00547. Epub 2018 Jan 30.
7
Bioinspired neuron-like electronics.仿生神经元电子学。
Nat Mater. 2019 May;18(5):510-517. doi: 10.1038/s41563-019-0292-9. Epub 2019 Feb 25.

引用本文的文献

1
Multifunctional bioelectronics for brain-body circuits.用于脑-体回路的多功能生物电子学。
Nat Rev Bioeng. 2025 Jun;3(6):465-484. doi: 10.1038/s44222-025-00289-3. Epub 2025 Mar 27.
5
Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.用于医疗设备的热拉伸形状和刚度可编程纤维
Adv Healthc Mater. 2025 Apr;14(10):e2403235. doi: 10.1002/adhm.202403235. Epub 2024 Dec 31.
6
Chronic recording of brain activity in awake toads.清醒蟾蜍脑活动的长期记录。
bioRxiv. 2024 Oct 18:2024.10.16.618567. doi: 10.1101/2024.10.16.618567.
7
Optogenetic Brain-Computer Interfaces.光遗传学脑机接口
Bioengineering (Basel). 2024 Aug 12;11(8):821. doi: 10.3390/bioengineering11080821.

本文引用的文献

3
Recent advances in bioelectronics chemistry.生物电子化学的最新进展。
Chem Soc Rev. 2020 Nov 21;49(22):7978-8035. doi: 10.1039/d0cs00333f. Epub 2020 Jul 16.
5
Learning with brain chemistry.借助大脑化学进行学习。
Nat Mater. 2020 Sep;19(9):934-935. doi: 10.1038/s41563-020-0711-y.
6
A biohybrid synapse with neurotransmitter-mediated plasticity.具有神经递质介导可塑性的生物杂交突触。
Nat Mater. 2020 Sep;19(9):969-973. doi: 10.1038/s41563-020-0703-y. Epub 2020 Jun 15.
8
Morphing electronics enable neuromodulation in growing tissue.变形电子学使神经调节能够在生长组织中进行。
Nat Biotechnol. 2020 Sep;38(9):1031-1036. doi: 10.1038/s41587-020-0495-2. Epub 2020 Apr 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验