Suppr超能文献

用于生物电子神经接口的仿生材料。

Bioinspired Materials for Bioelectronic Neural Interfaces.

作者信息

Woods Grace A, Rommelfanger Nicholas J, Hong Guosong

机构信息

Department of Applied Physics, Stanford University, Stanford, California, 94305, USA.

Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA.

出版信息

Matter. 2020 Oct 7;3(4):1087-1113. doi: 10.1016/j.matt.2020.08.002.

Abstract

The success of neural interfaces relies on their long-term stability and large scale in interrogating and manipulating neural activity after implantation. Conventional neural probes, owing to their limited spatiotemporal resolution and scale, face challenges for studying the massive, interconnected neural network in its native state. In this review, we argue that taking inspiration from biology will unlock the next generation of bioelectronic neural interfaces. Reducing the feature sizes of bioelectronic neural interfaces to mimic those of neurons enables high spatial resolution and multiplexity. Additionally, chronic stability at the device-tissue interface is realized by matching the mechanical properties of bioelectronic neural interfaces to those of the endogenous tissue. Further, modeling the design of neural interfaces after the endogenous topology of the neural circuitry enables new insights into the connectivity and dynamics of the brain. Lastly, functionalization of neural probe surfaces with coatings inspired by biology leads to enhanced tissue acceptance over extended timescales. Bioinspired neural interfaces will facilitate future developments in neuroscience studies and neurological treatments by leveraging bidirectional information transfer and integrating neuromorphic computing elements.

摘要

神经接口的成功依赖于其长期稳定性以及植入后在询问和操纵神经活动方面的大规模应用。传统神经探针由于其有限的时空分辨率和规模,在研究天然状态下庞大的、相互连接的神经网络时面临挑战。在本综述中,我们认为从生物学中汲取灵感将开启下一代生物电子神经接口的发展。将生物电子神经接口的特征尺寸缩小以模仿神经元的特征尺寸,可实现高空间分辨率和多路复用。此外,通过使生物电子神经接口的机械性能与内源性组织的机械性能相匹配,可实现设备与组织界面的长期稳定性。此外,按照神经回路的内源性拓扑结构对神经接口进行设计建模,能够为大脑的连接性和动态性带来新的见解。最后,用受生物学启发的涂层对神经探针表面进行功能化处理,可在更长的时间尺度上提高组织的接受度。受生物启发的神经接口将通过利用双向信息传输和集成神经形态计算元件,促进神经科学研究和神经治疗的未来发展。

相似文献

1
Bioinspired Materials for Bioelectronic Neural Interfaces.
Matter. 2020 Oct 7;3(4):1087-1113. doi: 10.1016/j.matt.2020.08.002.
2
Learning from the brain's architecture: bioinspired strategies towards implantable neural interfaces.
Curr Opin Biotechnol. 2021 Dec;72:8-12. doi: 10.1016/j.copbio.2021.07.020. Epub 2021 Aug 5.
3
Materials for flexible bioelectronic systems as chronic neural interfaces.
Nat Mater. 2020 Jun;19(6):590-603. doi: 10.1038/s41563-020-0679-7. Epub 2020 May 27.
4
Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
Acc Chem Res. 2018 Feb 20;51(2):309-318. doi: 10.1021/acs.accounts.7b00547. Epub 2018 Jan 30.
5
Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.
Acc Chem Res. 2024 Jun 18;57(12):1684-1695. doi: 10.1021/acs.accounts.4c00160. Epub 2024 May 30.
6
Bioinspired flexible electronics for seamless neural interfacing and chronic recording.
Nanoscale Adv. 2020 Jun 16;2(8):3095-3102. doi: 10.1039/d0na00323a. eCollection 2020 Aug 11.
7
Bioinspired neuron-like electronics.
Nat Mater. 2019 May;18(5):510-517. doi: 10.1038/s41563-019-0292-9. Epub 2019 Feb 25.
8
Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation.
Adv Healthc Mater. 2024 Sep;13(22):e2400562. doi: 10.1002/adhm.202400562. Epub 2024 Jun 6.
9
Exploring Present and Future Directions in Nano-Enhanced Optoelectronic Neuromodulation.
Acc Chem Res. 2024 May 7;57(9):1398-1410. doi: 10.1021/acs.accounts.4c00086. Epub 2024 Apr 23.
10
Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing.
J Funct Biomater. 2023 Jan 7;14(1):35. doi: 10.3390/jfb14010035.

引用本文的文献

1
Multifunctional bioelectronics for brain-body circuits.
Nat Rev Bioeng. 2025 Jun;3(6):465-484. doi: 10.1038/s44222-025-00289-3. Epub 2025 Mar 27.
2
Mechanically-adaptive, resveratrol-eluting neural probes for improved intracortical recording performance and stability.
Npj Flex Electron. 2025;9(1):64. doi: 10.1038/s41528-025-00440-5. Epub 2025 Jul 9.
3
Reliability and stability of Bioelectronic Medicine: a critical and pedagogical perspective.
Bioelectron Med. 2025 Jul 12;11(1):16. doi: 10.1186/s42234-025-00179-4.
4
Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics.
Cyborg Bionic Syst. 2025 Apr 29;6:0192. doi: 10.34133/cbsystems.0192. eCollection 2025.
5
Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.
Adv Healthc Mater. 2025 Apr;14(10):e2403235. doi: 10.1002/adhm.202403235. Epub 2024 Dec 31.
6
Chronic recording of brain activity in awake toads.
bioRxiv. 2024 Oct 18:2024.10.16.618567. doi: 10.1101/2024.10.16.618567.
7
Optogenetic Brain-Computer Interfaces.
Bioengineering (Basel). 2024 Aug 12;11(8):821. doi: 10.3390/bioengineering11080821.
8
An Integrated Neural Optrode with Modification of Polymer-Carbon Composite Films for Suppression of the Photoelectric Artifacts.
ACS Omega. 2024 Jul 17;9(30):33119-33129. doi: 10.1021/acsomega.4c04534. eCollection 2024 Jul 30.
9
A dynamically stable self-healable wire based on mechanical-electrical coupling.
Natl Sci Rev. 2024 Jan 4;11(3):nwae006. doi: 10.1093/nsr/nwae006. eCollection 2024 Mar.
10
A snapshot review on materials enabled multimodal bioelectronics for neurological and cardiac research.
MRS Adv. 2023 Nov;8(19):1047-1060. doi: 10.1557/s43580-023-00645-8. Epub 2023 Sep 22.

本文引用的文献

1
NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions.
AIP Adv. 2024 Aug 7;14(8):085109. doi: 10.1063/5.0216979. eCollection 2024 Aug.
2
Bioinspired flexible electronics for seamless neural interfacing and chronic recording.
Nanoscale Adv. 2020 Jun 16;2(8):3095-3102. doi: 10.1039/d0na00323a. eCollection 2020 Aug 11.
3
Recent advances in bioelectronics chemistry.
Chem Soc Rev. 2020 Nov 21;49(22):7978-8035. doi: 10.1039/d0cs00333f. Epub 2020 Jul 16.
4
Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy.
Nat Nanotechnol. 2020 Aug;15(8):698-708. doi: 10.1038/s41565-020-0696-3. Epub 2020 Jun 29.
5
Learning with brain chemistry.
Nat Mater. 2020 Sep;19(9):934-935. doi: 10.1038/s41563-020-0711-y.
6
A biohybrid synapse with neurotransmitter-mediated plasticity.
Nat Mater. 2020 Sep;19(9):969-973. doi: 10.1038/s41563-020-0703-y. Epub 2020 Jun 15.
7
Materials for flexible bioelectronic systems as chronic neural interfaces.
Nat Mater. 2020 Jun;19(6):590-603. doi: 10.1038/s41563-020-0679-7. Epub 2020 May 27.
8
Morphing electronics enable neuromodulation in growing tissue.
Nat Biotechnol. 2020 Sep;38(9):1031-1036. doi: 10.1038/s41587-020-0495-2. Epub 2020 Apr 20.
10
Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system.
Matter. 2020 Apr 1;2(4):921-937. doi: 10.1016/j.matt.2020.01.021. Epub 2020 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验