Zhang Wenrui, Li Peng
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States.
Front Neurosci. 2019 Feb 5;13:31. doi: 10.3389/fnins.2019.00031. eCollection 2019.
As a self-adaptive mechanism, intrinsic plasticity (IP) plays an essential role in maintaining homeostasis and shaping the dynamics of neural circuits. From a computational point of view, IP has the potential to enable promising non-Hebbian learning in artificial neural networks. While IP based learning has been attempted for spiking neuron models, the existing IP rules are in nature, and the practical success of their application has not been demonstrated particularly toward enabling real-life learning tasks. This work aims to address the theoretical and practical limitations of the existing works by proposing a new IP rule named SpiKL-IP. SpiKL-IP is developed based on a rigorous information-theoretic approach where the target of IP tuning is to maximize the entropy of the output firing rate distribution of each spiking neuron. This goal is achieved by tuning the output firing rate distribution toward a targeted optimal exponential distribution. Operating on a proposed firing-rate transfer function, SpiKL-IP adapts the intrinsic parameters of a spiking neuron while minimizing the KL-divergence from the targeted exponential distribution to the actual output firing rate distribution. SpiKL-IP can robustly operate in an online manner under complex inputs and network settings. Simulation studies demonstrate that the application of SpiKL-IP to individual neurons in isolation or as part of a larger spiking neural network robustly produces the desired exponential distribution. The evaluation of SpiKL-IP under real-world speech and image classification tasks shows that SpiKL-IP noticeably outperforms two existing IP rules and can significantly boost recognition accuracy by up to more than 16%.
作为一种自适应机制,内在可塑性(IP)在维持内环境稳定和塑造神经回路动态方面发挥着重要作用。从计算的角度来看,IP有潜力在人工神经网络中实现有前景的非赫布学习。虽然已经尝试将基于IP的学习应用于脉冲神经元模型,但现有的IP规则本质上存在局限性,其应用在实际中的成功尚未得到特别证明,尤其是在实现现实生活中的学习任务方面。这项工作旨在通过提出一种名为SpiKL-IP的新IP规则来解决现有工作的理论和实际局限性。SpiKL-IP是基于一种严格的信息论方法开发的,其中IP调整的目标是最大化每个脉冲神经元输出发放率分布的熵。这个目标是通过将输出发放率分布调整为目标最优指数分布来实现的。SpiKL-IP基于所提出的发放率传递函数运行,在最小化从目标指数分布到实际输出发放率分布的KL散度的同时,调整脉冲神经元的内在参数。SpiKL-IP可以在复杂输入和网络设置下以在线方式稳健运行。仿真研究表明,将SpiKL-IP应用于单个孤立神经元或作为更大脉冲神经网络的一部分,能够稳健地产生所需的指数分布。在实际语音和图像分类任务下对SpiKL-IP的评估表明,SpiKL-IP明显优于现有的两种IP规则,并且可以显著提高识别准确率,最高可达16%以上。