Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina.
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina.
Sci Rep. 2019 Feb 26;9(1):2791. doi: 10.1038/s41598-019-39568-6.
Plants are continuously challenged by pathogens, affecting most staple crops compromising food security. They have evolved different mechanisms to counterattack pathogen infection, including the accumulation of pathogenesis-related (PR) proteins. These proteins have been implicated in active defense, and their overexpression has led to enhanced resistance in nuclear transgenic plants, although in many cases constitutive expression resulted in lesion-mimic phenotypes. We decided to evaluate plastid transformation as an alternative to overcome limitations observed for nuclear transgenic technologies. The advantages include the possibilities to express polycistronic RNAs, to obtain higher protein expression levels, and the impeded gene flow due to the maternal inheritance of the plastome. We transformed Nicotiana tabacum plastids to co-express the tobacco PR proteins AP24 and β-1,3-glucanase. Transplastomic tobacco lines were characterized and subsequently challenged with Rhizoctonia solani, Peronospora hyoscyami f.sp. tabacina and Phytophthora nicotianae. Results showed that transplastomic plants expressing AP24 and β-1,3-glucanase are resistant to R. solani in greenhouse conditions and, furthermore, they are protected against P.hyoscyami f.sp. tabacina and P. nicotianae in field conditions under high inoculum pressure. Our results suggest that plastid co- expression of PR proteins AP24 and β-1,3-glucanase resulted in enhanced resistance against filamentous pathogens.
植物不断受到病原体的挑战,影响到大多数主要作物,危及粮食安全。它们进化出不同的机制来对抗病原体感染,包括积累与发病机制相关(PR)的蛋白质。这些蛋白质被认为与主动防御有关,它们的过表达导致核转基因植物的抗性增强,尽管在许多情况下组成型表达导致病变模拟表型。我们决定评估质体转化作为克服核转基因技术观察到的局限性的替代方法。其优点包括表达多顺反子 RNA 的可能性、获得更高的蛋白质表达水平,以及由于质体的母系遗传而阻碍基因流动。我们将烟草质体转化为共表达烟草 PR 蛋白 AP24 和β-1,3-葡聚糖酶。对转质体烟草系进行了特征分析,随后用立枯丝核菌、烟草霜霉病菌和烟草疫霉进行了挑战。结果表明,表达 AP24 和β-1,3-葡聚糖酶的转质体植物在温室条件下对抗立枯丝核菌具有抗性,此外,它们在高接种压力下的田间条件下也能抵抗烟草霜霉病菌和烟草疫霉。我们的结果表明,PR 蛋白 AP24 和β-1,3-葡聚糖酶的质体共表达导致对丝状病原体的抗性增强。