Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, Turi (BA), Italy.
Sci Rep. 2019 Feb 26;9(1):2809. doi: 10.1038/s41598-019-39010-x.
Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and -signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management.
葡萄(Vitis vinifera L.)在世界范围内被广泛种植,用于生产鲜食葡萄和葡萄酒。其种植需要灌溉供水,特别是在干旱和半干旱地区。水分不足会影响浆果和葡萄酒的质量,这主要取决于植物感知到的胁迫程度,而胁迫程度是一个品种特有的特征。我们测试了两个鲜食葡萄品种 Italia 和 Autumn royal 对水分亏缺的生理和分子响应,并强调了它们的不同适应机制。微阵列分析表明,Autumn royal 仅涉及 29 个基因的反应,这些基因与植物应激反应和 ABA/激素信号转导有关,以调节对水分亏缺的响应。相比之下,Italia 品种则协调了非常广泛的响应(我们发现了 1037 个差异表达基因),这些响应改变了细胞壁组织、碳水化合物代谢、对活性氧、激素和渗透胁迫的反应。我们首次将转录组数据与品种特异性基因组学进行了整合,并发现 ABA 感知和信号转导是介导品种对干旱早期响应的特异性行为的关键因素。因此,我们能够分离出与基因型依赖的抗旱反应相关的候选基因。这些见解将有助于鉴定可靠的植物应激指标,并为可持续的品种特异性水分管理方案提供依据。