Suppr超能文献

基于卷积神经网络的癫痫高频振荡自动检测

Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network.

作者信息

Zuo Rui, Wei Jing, Li Xiaonan, Li Chunlin, Zhao Cui, Ren Zhaohui, Liang Ying, Geng Xinling, Jiang Chenxi, Yang Xiaofeng, Zhang Xu

机构信息

School of Biomedical Engineering, Capital Medical University, Beijing, China.

Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.

出版信息

Front Comput Neurosci. 2019 Feb 12;13:6. doi: 10.3389/fncom.2019.00006. eCollection 2019.

Abstract

Epilepsy is one of the most common chronic neurological diseases. High-frequency oscillations (HFOs) have emerged as promising biomarkers for the epileptogenic zone. However, visual marking of HFOs is a time-consuming and laborious process. Several automated techniques have been proposed to detect HFOs, yet these are still far from being suitable for application in a clinical setting. Here, ripples and fast ripples from intracranial electroencephalograms were detected in six patients with intractable epilepsy using a convolutional neural network (CNN) method. This approach proved more accurate than using four other HFO detectors integrated in RIPPLELAB, providing a higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples and 79.36% for fast ripples) for HFO detection. Furthermore, for one patient, the Cohen's kappa coefficients comparing automated detection and visual analysis results were 0.541 for ripples and 0.777 for fast ripples. Hence, our automated detector was capable of reliable estimates of ripples and fast ripples with higher sensitivity and specificity than four other HFO detectors. Our detector may be used to assist clinicians in locating epileptogenic zone in the future.

摘要

癫痫是最常见的慢性神经疾病之一。高频振荡(HFOs)已成为癫痫发作起始区很有前景的生物标志物。然而,对HFOs进行视觉标记是一个耗时费力的过程。已经提出了几种自动检测技术来检测HFOs,但这些技术仍远不适合在临床环境中应用。在此,使用卷积神经网络(CNN)方法对6例难治性癫痫患者的颅内脑电图中的涟漪波和快速涟漪波进行了检测。该方法被证明比使用集成在RIPPLELAB中的其他四种HFO检测器更准确,在HFO检测中提供了更高的灵敏度(涟漪波为77.04%,快速涟漪波为83.23%)和特异性(涟漪波为72.27%,快速涟漪波为79.36%)。此外,对于一名患者,比较自动检测和视觉分析结果的科恩kappa系数,涟漪波为0.541,快速涟漪波为0.777。因此,我们的自动检测器能够以比其他四种HFO检测器更高的灵敏度和特异性可靠地估计涟漪波和快速涟漪波。我们的检测器未来可能用于协助临床医生定位癫痫发作起始区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验