Suppr超能文献

通过全外显子组测序和大数据分析推进个性化医疗

Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics.

作者信息

Suwinski Pawel, Ong ChuangKee, Ling Maurice H T, Poh Yang Ming, Khan Asif M, Ong Hui San

机构信息

Malaysian Genomics Resource Centre Berhad, Kuala Lumpur, Malaysia.

Centre for Bioinformatics, School of Data Sciences, Perdana University, Serdang, Malaysia.

出版信息

Front Genet. 2019 Feb 12;10:49. doi: 10.3389/fgene.2019.00049. eCollection 2019.

Abstract

There is a growing attention toward personalized medicine. This is led by a fundamental shift from the 'one size fits all' paradigm for treatment of patients with conditions or predisposition to diseases, to one that embraces novel approaches, such as tailored target therapies, to achieve the best possible outcomes. Driven by these, several national and international genome projects have been initiated to reap the benefits of personalized medicine. Exome and targeted sequencing provide a balance between cost and benefit, in contrast to whole genome sequencing (WGS). Whole exome sequencing (WES) targets approximately 3% of the whole genome, which is the basis for protein-coding genes. Nonetheless, it has the characteristics of big data in large deployment. Herein, the application of WES and its relevance in advancing personalized medicine is reviewed. WES is mapped to Big Data "10 Vs" and the resulting challenges discussed. Application of existing biological databases and bioinformatics tools to address the bottleneck in data processing and analysis are presented, including the need for new generation big data analytics for the multi-omics challenges of personalized medicine. This includes the incorporation of artificial intelligence (AI) in the clinical utility landscape of genomic information, and future consideration to create a new frontier toward advancing the field of personalized medicine.

摘要

人们对个性化医疗的关注日益增加。这是由一种根本转变所引领的,即从针对患有疾病或疾病易感性的患者采用“一刀切”的治疗模式,转变为采用诸如量身定制的靶向治疗等新方法,以实现尽可能好的治疗效果。受这些因素驱动,已经启动了几个国家和国际基因组项目,以收获个性化医疗的益处。与全基因组测序(WGS)相比,外显子组测序和靶向测序在成本和效益之间实现了平衡。全外显子组测序(WES)针对的是整个基因组的约3%,这是蛋白质编码基因的基础。尽管如此,它在大规模应用中具有大数据的特征。在此,对WES的应用及其在推进个性化医疗方面的相关性进行综述。将WES映射到大数据的“10V”并讨论由此产生的挑战。介绍了应用现有的生物数据库和生物信息学工具来解决数据处理和分析中的瓶颈,包括针对个性化医疗的多组学挑战对新一代大数据分析的需求。这包括在基因组信息的临床应用领域纳入人工智能(AI),以及未来为推进个性化医疗领域创造新前沿的考虑因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adab/6379253/45e25b06b525/fgene-10-00049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验