Max-Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.
Institute of Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany.
Nano Lett. 2019 Mar 13;19(3):2178-2185. doi: 10.1021/acs.nanolett.9b00752. Epub 2019 Mar 4.
Fluorescent nanodiamonds (fNDs) represent an emerging class of nanomaterials offering great opportunities for ultrahigh resolution imaging, sensing and drug delivery applications. Their biocompatibility, exceptional chemical and consistent photostability renders them particularly attractive for correlative light-electron microscopy studies providing unique insights into nanoparticle-cell interactions. Herein, we demonstrate a stringent procedure to image and quantify fNDs with a high contrast down to the single particle level in cells. Individual fNDs were directly visualized by energy-filtered transmission electron microscopy, that is, inside newly forming, early endosomal vesicles during their cellular uptake processes as well as inside cellular organelles such as a mitochondrion. Furthermore, we demonstrate the unequivocal identification, localization, and quantification of individual fNDs in larger fND clusters inside intracellular vesicles. Our studies are of great relevance to obtain quantitative information on nanoparticle trafficking and their various interactions with cells, membranes, and organelles, which will be crucial to design-improved sensors, imaging probes, and nanotherapeutics based on quantitative data.
荧光纳米金刚石(fNDs)代表了一类新兴的纳米材料,为超高分辨率成像、传感和药物输送应用提供了巨大的机会。它们的生物相容性、卓越的化学稳定性和一致的光稳定性使它们特别适合用于相关的光电子显微镜研究,为深入了解纳米颗粒与细胞的相互作用提供了独特的见解。在这里,我们展示了一种严格的程序,可以在细胞内以高对比度对 fNDs 进行成像和定量,甚至可以达到单个颗粒的水平。通过能量过滤透射电子显微镜直接观察单个 fND,即在细胞摄取过程中新形成的早期内体小泡内,以及在细胞细胞器(如线粒体)内。此外,我们还证明了在细胞内囊泡内较大的 fND 簇中,能够明确识别、定位和定量单个 fND。我们的研究对于获得关于纳米颗粒运输及其与细胞、膜和细胞器的各种相互作用的定量信息具有重要意义,这对于基于定量数据设计改进的传感器、成像探针和纳米疗法至关重要。