Galdino Flávia E, Rabelo Renata S, Scarpa Isabella, Yoneda Juliana S, Consonni Sílvio R, Paes Leme Adriana F, Smith Andrew M, Harkiolaki Maria, Cardoso Mateus B
Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil.
Small. 2025 Jun;21(22):e2409065. doi: 10.1002/smll.202409065. Epub 2024 Dec 8.
Upon exposure to biological environments, nanoparticles are rapidly coated with biomolecules, predominantly proteins, which alter their colloidal stability, biodistribution, and cell interactions. Despite extensive efforts to investigate the nanoparticles' fate, only a few studies use high-resolution characterization methods that allow in-depth characterization, and the existing methodologies are unable to differentiate particles internalized at the onset of incubation from those taken up toward the end of an incubation period. In this study, these limitations related to incubation disparities are overcame and precisely monitored the spatiotemporal displacement of colloidally stable protein corona-coated nanoparticles within cells. An unprecedented application of cryogenic X-ray nanotomography, combined with high-resolution, super-resolution, and correlative microscopy techniques, revealed the migration of nanoparticles to the perinuclear region while monitoring the evolution of cellular organelles in fully hydrated cells under near-native conditions, without the need for contrasting agents. Notably, this tracking indicates the progressive fusion of vesicles carrying the nanoparticles intracellularly. This strategy demonstrates the potential for uncovering the temporal aspects of nanoparticle behavior within cells and can be adaptable to a wide range of nanoparticles and cell types, offering a versatile and powerful tool to follow nanoparticles in cellular environments.
暴露于生物环境中时,纳米颗粒会迅速被生物分子(主要是蛋白质)包裹,这会改变它们的胶体稳定性、生物分布和细胞相互作用。尽管人们付出了巨大努力来研究纳米颗粒的归宿,但只有少数研究使用了能够进行深入表征的高分辨率表征方法,而且现有的方法无法区分在孵育开始时内化的颗粒和在孵育期结束时摄取的颗粒。在本研究中,克服了与孵育差异相关的这些局限性,并精确监测了胶体稳定的蛋白质冠层包裹的纳米颗粒在细胞内的时空位移。低温X射线纳米断层扫描技术与高分辨率、超分辨率和相关显微镜技术相结合的前所未有的应用,揭示了纳米颗粒向核周区域的迁移,同时在近乎天然的条件下监测完全水合细胞中细胞器的演变,而无需使用造影剂。值得注意的是,这种追踪表明携带纳米颗粒的囊泡在细胞内逐渐融合。该策略展示了揭示纳米颗粒在细胞内行为的时间方面的潜力,并且可以适用于广泛的纳米颗粒和细胞类型,为在细胞环境中追踪纳米颗粒提供了一种通用且强大的工具。