Suppr超能文献

利用智能应用程序估算作物营养状况,以支持氮肥施用。以水稻为例的案例研究。

Estimating Crop Nutritional Status Using Smart Apps to Support Nitrogen Fertilization. A Case Study on Paddy Rice.

机构信息

Department of Environmental Science and Policy, Università degli Studi di Milano, Cassandra lab, via Celoria 2, 20133 Milan, Italy.

Italian National Research Council, Institute on Remote Sensing of Environment (CNR-IREA), via Bassini 15, 20133 Milan, Italy.

出版信息

Sensors (Basel). 2019 Feb 25;19(4):981. doi: 10.3390/s19040981.

Abstract

Accurate nitrogen (N) management is crucial for the economic and environmental sustainability of cropping systems. Different methods have been developed to increase the efficiency of N fertilizations. However, their costs and/or low usability have often prevented their adoption in operational contexts. We developed a diagnostic system to support topdressing N fertilization based on the use of smart apps to derive a N nutritional index (NNI; actual/critical plant N content). The system was tested on paddy rice via dedicated field experiments, where the smart apps PocketLAI and PocketN were used to estimate, respectively, critical (from leaf area index) and actual plant N content. Results highlighted the system's capability to correctly detect the conditions of N stress (NNI < 1) and N surplus (NNI > 1), thereby effectively supporting topdressing fertilizations. A resource-efficient methodology to derive PocketN calibration curves for different varieties-needed to extend the system to new contexts-was also developed and successfully evaluated on 43 widely grown European varieties. The widespread availability of smartphones and the possibility to integrate NNI and remote sensing technologies to derive variable rate fertilization maps generate new opportunities for supporting N management under real farming conditions.

摘要

准确的氮(N)管理对于作物系统的经济和环境可持续性至关重要。已经开发了不同的方法来提高氮肥的效率。然而,其成本和/或低可用性常常阻止了它们在实际情况下的采用。我们开发了一种诊断系统,以支持基于使用智能应用程序来推导 N 营养指数(NNI;实际/临界植物 N 含量)的追肥氮肥。该系统通过专门的田间试验在水稻上进行了测试,其中使用了智能应用程序 PocketLAI 和 PocketN 分别估计临界(来自叶面积指数)和实际植物 N 含量。结果突出了该系统正确检测 N 胁迫(NNI < 1)和 N 过剩(NNI > 1)条件的能力,从而有效地支持追肥施肥。还开发了一种资源高效的方法来为不同品种推导 PocketN 校准曲线-需要将系统扩展到新的环境-并在 43 个广泛种植的欧洲品种上成功评估。智能手机的广泛可用性以及将 NNI 和遥感技术集成以推导出变量施肥图的可能性,为在实际农业条件下支持 N 管理提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e70/6412567/ed04dd8f0079/sensors-19-00981-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验