García-Olalla Oscar, Alegre Enrique, Fernández-Robles Laura, Fidalgo Eduardo, Saikia Surajit
Department of Electrical, Systems and Automation, Universidad de León, 24071 León, Spain.
Researcher at INCIBE (Spanish National Cybersecurity Institute), 24005 León, Spain.
Sensors (Basel). 2018 Apr 25;18(5):1329. doi: 10.3390/s18051329.
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments.
用于室内环境的基于纺织品的图像检索可用于检索包含相同纺织品的图像,这可能表明场景相关。这为希望基于纺织品匹配寻找证据的执法机构提供了一种有用的方法。在本文中,我们提出了一种新颖的流程,允许搜索和检索出现在真实场景图片中的纺织品。我们的方法基于首先通过对原始照片的RGB、HSV和色调通道的高通滤波图像使用最大稳定极值区域(MSER)来获取包含纺织品的区域。为了描述纺织品区域,我们证明了在使用相关距离将查询纺织品补丁与候选区域进行匹配时,方向梯度直方图(HOG)和基于局部二值模式的颜色和局部结构信息描述符(HCLOSIB)的组合是我们方案的最佳选择。此外,我们引入了一个新的数据集TextilTube,它总共包含67个类别中标记的1913个纺织品区域。在40个最近匹配中我们获得了84.94%的成功率,仅考虑第一个匹配时精度为37.44%,这优于所评估的当前深度学习方法。实验结果表明,该流程可用于在室内环境中建立一个有效的基于纺织品的图像检索系统。