Department of Bio-convergence Engineering , Korea University , Seoul 02841 , South Korea.
Department of Medical & Pharmaceutical Sciences , Sookmyung Women's University , Seoul 04310 , South Korea.
Anal Chem. 2019 May 7;91(9):5677-5684. doi: 10.1021/acs.analchem.8b05533. Epub 2019 Mar 14.
Rapid diagnosis and quarantine of influenza virus mutant-infected people is critical to contain the fatal viral infection spread because effective antiviral drugs are normally not available. Conventional methods, however, cannot be used for the diagnosis because these methods need predefined labels, likely also unavailable for just emerging viruses. Here, we propose label-free identification of cells infected with different influenza viruses based on surface-enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). Viral envelope proteins that are displayed on the surface of cells after infection of influenza viruses were targeted for this identification. Cells that expressed the envelope proteins of A/WSN/33 H1N1 or A/California/04/2009 H1N1 influenza viruses produced distinct SERS signals. Cells that displayed combinations of the envelope proteins from these two viral variants, an indication of emergence of a new virus, also generated characteristic SERS patterns. However, the cell's own surface proteins often hindered the identification of virally infected cells by producing SERS peaks similar to viral ones. PCA of the obtained SERS patterns could effectively capture the virus-specific signal components from the jumbled SERS peaks. Our study demonstrates a potential of combination of SERS and PCA to identify newly emerging influenza viruses through sensing the cells infected with the viruses.
快速诊断和隔离流感病毒突变感染者对于遏制致命病毒感染的传播至关重要,因为通常没有有效的抗病毒药物。然而,由于常规方法需要预定义的标签,而这些标签可能也不适用于刚刚出现的病毒,因此无法用于诊断。在这里,我们提出了一种基于表面增强拉曼光谱(SERS)和主成分分析(PCA)的无标记识别方法,用于鉴定不同流感病毒感染的细胞。该方法针对感染流感病毒后在细胞表面显示的病毒包膜蛋白进行鉴定。表达 A/WSN/33 H1N1 或 A/California/04/2009 H1N1 流感病毒包膜蛋白的细胞产生了独特的 SERS 信号。显示这两种病毒变体包膜蛋白组合的细胞也产生了特征性的 SERS 模式,这表明新病毒的出现。然而,细胞自身的表面蛋白通常会产生与病毒相似的 SERS 峰,从而阻碍对病毒感染细胞的识别。对获得的 SERS 图谱进行 PCA 分析,可以有效地从混乱的 SERS 峰中捕获病毒特异性信号成分。我们的研究表明,通过检测感染病毒的细胞,SERS 和 PCA 的结合具有识别新出现的流感病毒的潜力。