Suppr超能文献

比较分析肌酐和渗透压作为目标代谢组学中用于哮喘和 COPD 鉴别诊断的尿液归一化策略。

Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD.

机构信息

College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.

Calgary Laboratory Services, Alberta Health Services, Calgary, AB, Canada.

出版信息

Metabolomics. 2018 Aug 29;14(9):115. doi: 10.1007/s11306-018-1418-9.

Abstract

INTRODUCTION

Urine is an ideal matrix for metabolomics investigation due to its non-invasive nature of collection and its rich metabolite content. Despite the advancements in mass spectrometry and H-NMR platforms in urine metabolomics, the statistical analysis of the generated data is challenged with the need to adjust for the hydration status of the person. Normalization to creatinine or osmolality values are the most adopted strategies, however, each technique has its challenges that can hinder its wider application. We have been developing targeted urine metabolomic methods to differentiate two important respiratory diseases, namely asthma and chronic obstructive pulmonary disease (COPD).

OBJECTIVE

To assess whether the statistical model of separation of diseases using targeted metabolomic data would be improved by normalization to osmolality instead of creatinine.

METHODS

The concentration of 32 metabolites was previously measured by two liquid chromatography-tandem mass spectrometry methods in 51 human urine samples with either asthma (n = 25) or COPD (n = 26). The data was normalized to creatinine or osmolality. Statistical analysis of the normalized values in each disease was performed using partial least square discriminant analysis (PLS-DA). Models of separation of diseases were compared.

RESULTS

We found that normalization to creatinine or osmolality did not significantly change the PLS-DA models of separation (RQ = 0.919, 0.705 vs RQ = 0.929, 0.671, respectively). The metabolites of importance in the models remained similar for both normalization methods.

CONCLUSION

Our findings suggest that targeted urine metabolomic data can be normalized for hydration using creatinine or osmolality with no significant impact on the diagnostic accuracy of the model.

摘要

简介

尿液是代谢组学研究的理想基质,因为其采集具有非侵入性,且富含代谢物。尽管质谱和 H-NMR 平台在尿液代谢组学方面取得了进展,但生成数据的统计分析仍面临需要调整个体水合状态的挑战。肌酐或渗透压值的归一化是最常用的策略,但每种技术都有其挑战,可能会阻碍其更广泛的应用。我们一直在开发靶向尿液代谢组学方法,以区分两种重要的呼吸系统疾病,即哮喘和慢性阻塞性肺疾病(COPD)。

目的

评估使用靶向代谢组学数据分离疾病的统计模型是否通过渗透压归一化而不是肌酐归一化得到改善。

方法

此前,我们使用两种液相色谱-串联质谱方法在 51 个人类尿液样本中测量了 32 种代谢物的浓度,这些样本分别患有哮喘(n=25)或 COPD(n=26)。数据被归一化为肌酐或渗透压。在每种疾病中,对归一化值进行偏最小二乘判别分析(PLS-DA)的统计分析。比较疾病分离模型。

结果

我们发现,肌酐或渗透压归一化并没有显著改变疾病分离的 PLS-DA 模型(RQ=0.919、0.705 与 RQ=0.929、0.671 分别)。两种归一化方法中,模型中重要的代谢物保持相似。

结论

我们的研究结果表明,靶向尿液代谢组学数据可以使用肌酐或渗透压进行水合归一化,而对模型的诊断准确性没有显著影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验