Suppr超能文献

基于贝叶斯广义加性模型和频率论广义加性模型评估每日细颗粒物暴露与呼吸死亡率之间关联的比较:一项模拟研究。

Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association Between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study.

机构信息

Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.

Division of Vital Statistics, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.

出版信息

Int J Environ Res Public Health. 2019 Mar 1;16(5):746. doi: 10.3390/ijerph16050746.

Abstract

To compare the performance of frequentist and Bayesian generalized additive models (GAMs) in terms of accuracy and precision for assessing the association between daily exposure to fine particles and respiratory mortality using simulated data based on a real time-series study. : In our study, we examined the estimates from a fully Bayesian GAM using simulated data based on a genuine time-series study on fine particles with a diameter of 2.5 μm or less (PM) and respiratory deaths conducted in Shanghai, China. The simulation was performed by multiplying the observed daily death with a random error. The underlying priors for Bayesian analysis are estimated using the real world time-series data. We also examined the sensitivity of Bayesian GAM to the choice of priors and to true parameter. : The frequentist GAM and Bayesian GAM show similar means and variances of the estimates of the parameters of interest. However, the estimates from Bayesian GAM show relatively more fluctuation, which to some extent reflects the uncertainty inherent in Bayesian estimation. : Although computationally intensive, Bayesian GAM would be a better solution to avoid potentially over-confident inferences. With the increasing computing power of computers and statistical packages available, fully Bayesian methods for decision making may become more widely applied in the future.

摘要

比较基于真实时间序列研究的模拟数据的频率论和贝叶斯广义加性模型(GAMs)在评估细颗粒物每日暴露与呼吸死亡率之间关联的准确性和精密度方面的性能。在我们的研究中,我们使用基于中国上海直径为 2.5μm 或以下的细颗粒物(PM)和呼吸死亡的真实时间序列研究的模拟数据,检查了完全贝叶斯 GAM 的估计值。模拟是通过将观察到的每日死亡与随机误差相乘来完成的。贝叶斯分析的基本先验是使用真实世界的时间序列数据来估计的。我们还检查了贝叶斯 GAM 对先验和真实参数选择的敏感性。频率论 GAM 和贝叶斯 GAM 对感兴趣的参数的估计的均值和方差显示出相似的结果。然而,贝叶斯 GAM 的估计值显示出相对更多的波动,这在一定程度上反映了贝叶斯估计固有的不确定性。尽管计算量很大,但贝叶斯 GAM 是避免潜在过度自信推断的更好解决方案。随着计算机和可用统计软件包的计算能力不断提高,用于决策的完全贝叶斯方法在未来可能会得到更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f57/6427163/97a512429cae/ijerph-16-00746-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验