Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
Information and Systems Sciences Laboratory, HRL Laboratories, Malibu, CA 90265.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5747-5755. doi: 10.1073/pnas.1815958116. Epub 2019 Mar 4.
Spike timing is thought to play a critical role in neural computation and communication. Methods for adjusting spike timing are therefore of great interest to researchers and clinicians alike. Transcranial electrical stimulation (tES) is a noninvasive technique that uses weak electric fields to manipulate brain activity. Early results have suggested that this technique can improve subjects' behavioral performance on a wide range of tasks and ameliorate some clinical conditions. Nevertheless, considerable skepticism remains about its efficacy, especially because the electric fields reaching the brain during tES are small, whereas the likelihood of indirect effects is large. Our understanding of its effects in humans is largely based on extrapolations from simple model systems and indirect measures of neural activity. As a result, fundamental questions remain about whether and how tES can influence neuronal activity in the human brain. Here, we demonstrate that tES, as typically applied to humans, affects the firing patterns of individual neurons in alert nonhuman primates, which are the best available animal model for the human brain. Specifically, tES consistently influences the timing, but not the rate, of spiking activity within the targeted brain region. Such effects are frequency- and location-specific and can reach deep brain structures; control experiments show that they cannot be explained by sensory stimulation or other indirect influences. These data thus provide a strong mechanistic rationale for the use of tES in humans and will help guide the development of future tES applications.
尖峰时间被认为在神经计算和通信中起着关键作用。因此,调整尖峰时间的方法引起了研究人员和临床医生的极大兴趣。经颅电刺激(tES)是一种非侵入性技术,利用弱电场来操纵大脑活动。早期的结果表明,这种技术可以提高受试者在广泛任务上的行为表现,并改善一些临床状况。尽管如此,人们对其疗效仍存在相当大的怀疑,特别是因为 tES 过程中到达大脑的电场很小,而间接影响的可能性很大。我们对其在人类中的影响的理解在很大程度上是基于对简单模型系统的推断和对神经活动的间接测量。因此,关于 tES 是否以及如何能够影响人类大脑中的神经元活动,仍然存在一些基本问题。在这里,我们证明了,如通常在人类中应用的那样,tES 会影响警觉状态下的非人类灵长类动物的单个神经元的发射模式,这是非人类灵长类动物是最接近人类大脑的动物模型。具体来说,tES 一致地影响着目标大脑区域内的尖峰活动的时间,但不影响其速率。这种效应具有频率和位置特异性,可以到达深部脑结构;对照实验表明,它们不能用感官刺激或其他间接影响来解释。这些数据因此为 tES 在人类中的应用提供了强有力的机制依据,并将有助于指导未来 tES 应用的发展。