Suppr超能文献

经颅电刺激用于深部脑刺激的研究进展

[Research progress on transcranial electrical stimulation for deep brain stimulation].

作者信息

Meng Weiyu, Zhang Cheng, Wu Changzhe, Zhang Guanghao, Huo Xiaolin

机构信息

Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.

School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):1005-1011. doi: 10.7507/1001-5515.202210012.

Abstract

Transcranial electric stimulation (TES) is a non-invasive, economical, and well-tolerated neuromodulation technique. However, traditional TES is a whole-brain stimulation with a small current, which cannot satisfy the need for effectively focused stimulation of deep brain areas in clinical treatment. With the deepening of the clinical application of TES, researchers have constantly investigated new methods for deeper, more intense, and more focused stimulation, especially multi-electrode stimulation represented by high-precision TES and temporal interference stimulation. This paper reviews the stimulation optimization schemes of TES in recent years and further analyzes the characteristics and limitations of existing stimulation methods, aiming to provide a reference for related clinical applications and guide the following research on TES. In addition, this paper proposes the viewpoint of the development direction of TES, especially the direction of optimizing TES for deep brain stimulation, aiming to provide new ideas for subsequent research and application.

摘要

经颅电刺激(TES)是一种非侵入性、经济且耐受性良好的神经调节技术。然而,传统的经颅电刺激是一种小电流的全脑刺激,无法满足临床治疗中对深部脑区进行有效聚焦刺激的需求。随着经颅电刺激临床应用的不断深入,研究人员不断探索更深、更强、更聚焦刺激的新方法,尤其是以高精度经颅电刺激和时间干扰刺激为代表的多电极刺激。本文综述了近年来经颅电刺激的刺激优化方案,并进一步分析了现有刺激方法的特点和局限性,旨在为相关临床应用提供参考,并指导后续的经颅电刺激研究。此外,本文提出了经颅电刺激的发展方向观点,特别是针对深部脑刺激优化经颅电刺激的方向,旨在为后续研究和应用提供新思路。

相似文献

1
[Research progress on transcranial electrical stimulation for deep brain stimulation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):1005-1011. doi: 10.7507/1001-5515.202210012.
2
Can transcranial electric stimulation with multiple electrodes reach deep targets?
Brain Stimul. 2019 Jan-Feb;12(1):30-40. doi: 10.1016/j.brs.2018.09.010. Epub 2018 Sep 26.
3
Transcranial alternating current stimulation entrains single-neuron activity in the primate brain.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5747-5755. doi: 10.1073/pnas.1815958116. Epub 2019 Mar 4.
4
[An efficient and practical electrode optimization method for transcranial electrical stimulation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Aug 25;41(4):724-731. doi: 10.7507/1001-5515.202308016.
6
A technical guide to tDCS, and related non-invasive brain stimulation tools.
Clin Neurophysiol. 2016 Feb;127(2):1031-1048. doi: 10.1016/j.clinph.2015.11.012. Epub 2015 Nov 22.
7
Transcranial Electrical Stimulation generates electric fields in deep human brain structures.
Brain Stimul. 2022 Jan-Feb;15(1):1-12. doi: 10.1016/j.brs.2021.11.001. Epub 2021 Nov 4.
8
10
Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints.
Neuroimage. 2019 Dec;203:116183. doi: 10.1016/j.neuroimage.2019.116183. Epub 2019 Sep 13.

引用本文的文献

1
[Research progress on combined transcranial electromagnetic stimulation in clinical application in brain diseases].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):847-856. doi: 10.7507/1001-5515.202410055.
2
Efficacy of non-invasive brain stimulation for post-stroke sleep disorders: a systematic review and meta-analysis.
Front Neurol. 2024 Oct 30;15:1420363. doi: 10.3389/fneur.2024.1420363. eCollection 2024.

本文引用的文献

1
Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation.
Nat Neurosci. 2022 Sep;25(9):1237-1246. doi: 10.1038/s41593-022-01132-3. Epub 2022 Aug 22.
3
A Noninvasive Deep Brain Stimulation Method via Temporal-Spatial Interference Magneto-Acoustic Effect: Simulation and Experimental Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Aug;69(8):2474-2483. doi: 10.1109/TUFFC.2022.3187748. Epub 2022 Jul 29.
4
Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation.
Prog Neurobiol. 2022 Sep;216:102311. doi: 10.1016/j.pneurobio.2022.102311. Epub 2022 Jun 22.
5
State-dependent effects of neural stimulation on brain function and cognition.
Nat Rev Neurosci. 2022 Aug;23(8):459-475. doi: 10.1038/s41583-022-00598-1. Epub 2022 May 16.
9
Neuromodulatory Effects of HD-tACS/tDCS on the Prefrontal Cortex: A Resting-State fNIRS-EEG Study.
IEEE J Biomed Health Inform. 2022 May;26(5):2192-2203. doi: 10.1109/JBHI.2021.3127080. Epub 2022 May 5.
10
Transcranial Electrical Stimulation generates electric fields in deep human brain structures.
Brain Stimul. 2022 Jan-Feb;15(1):1-12. doi: 10.1016/j.brs.2021.11.001. Epub 2021 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验