Department of Physiology, Emory University, Atlanta, Georgia 30322, and.
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30318.
J Neurosci. 2019 May 1;39(18):3412-3433. doi: 10.1523/JNEUROSCI.2945-17.2019. Epub 2019 Mar 4.
Peripheral nerve injury results in persistent motor deficits, even after the nerve regenerates and muscles are reinnervated. This lack of functional recovery is partly explained by brain and spinal cord circuit alterations triggered by the injury, but the mechanisms are generally unknown. One example of this plasticity is the die-back in the spinal cord ventral horn of the projections of proprioceptive axons mediating the stretch reflex (Ia afferents). Consequently, Ia information about muscle length and dynamics is lost from ventral spinal circuits, degrading motor performance after nerve regeneration. Simultaneously, there is activation of microglia around the central projections of peripherally injured Ia afferents, suggesting a possible causal relationship between neuroinflammation and Ia axon removal. Therefore, we used mice (both sexes) that allow visualization of microglia (CX3CR1-GFP) and infiltrating peripheral myeloid cells (CCR2-RFP) and related changes in these cells to Ia synaptic losses (identified by VGLUT1 content) on retrogradely labeled motoneurons. Microgliosis around axotomized motoneurons starts and peaks within 2 weeks after nerve transection. Thereafter, this region becomes infiltrated by CCR2 cells, and VGLUT1 synapses are lost in parallel. Immunohistochemistry, flow cytometry, and genetic lineage tracing showed that infiltrating CCR2 cells include T cells, dendritic cells, and monocytes, the latter differentiating into tissue macrophages. VGLUT1 synapses were rescued after attenuating the ventral microglial reaction by removal of colony stimulating factor 1 from motoneurons or in CCR2 global KOs. Thus, both activation of ventral microglia and a CCR2-dependent mechanism are necessary for removal of VGLUT1 synapses and alterations in Ia-circuit function following nerve injuries. Synaptic plasticity and reorganization of essential motor circuits after a peripheral nerve injury can result in permanent motor deficits due to the removal of sensory Ia afferent synapses from the spinal cord ventral horn. Our data link this major circuit change with the neuroinflammatory reaction that occurs inside the spinal cord following injury to peripheral nerves. We describe that both activation of microglia and recruitment into the spinal cord of blood-derived myeloid cells are necessary for motor circuit synaptic plasticity. This study sheds new light into mechanisms that trigger major network plasticity in CNS regions removed from injury sites and that might prevent full recovery of function, even after successful regeneration.
周围神经损伤导致持续的运动功能障碍,即使神经再生和肌肉重新支配。这种功能恢复的缺乏部分可以用损伤触发的大脑和脊髓回路改变来解释,但机制通常尚不清楚。这种可塑性的一个例子是介导牵张反射的本体感受轴突的脊髓腹角投射的逆行性萎缩(Ia 传入纤维)。因此,来自脊髓腹角回路的 Ia 信息关于肌肉长度和动态的信息丢失,从而降低神经再生后的运动性能。同时,外周损伤的 Ia 传入纤维的中央投射周围有小胶质细胞的激活,这表明神经炎症和 Ia 轴突去除之间可能存在因果关系。因此,我们使用了允许可视化小胶质细胞(CX3CR1-GFP)和浸润性外周髓样细胞(CCR2-RFP)的小鼠(雌雄同体),以及这些细胞与逆行标记的运动神经元上的 Ia 突触丢失(通过 VGLUT1 含量确定)的相关变化。轴突切断后的运动神经元周围的小胶质细胞增生始于神经横断后 2 周内,并达到高峰。此后,该区域被 CCR2 细胞浸润,VGLUT1 突触平行丢失。免疫组织化学、流式细胞术和遗传谱系追踪显示,浸润性 CCR2 细胞包括 T 细胞、树突状细胞和单核细胞,后者分化为组织巨噬细胞。通过从运动神经元中去除集落刺激因子 1 或在 CCR2 全局 KO 中减弱腹侧小胶质细胞反应,可以挽救 VGLUT1 突触。因此,腹侧小胶质细胞的激活和 CCR2 依赖性机制都是去除神经损伤后 VGLUT1 突触和 Ia 回路功能改变所必需的。外周神经损伤后,重要运动回路的突触可塑性和重组可能会导致永久性运动功能障碍,这是由于脊髓腹角中感觉 Ia 传入突触的去除。我们的数据将这种主要的回路变化与外周神经损伤后脊髓内发生的神经炎症反应联系起来。我们描述了小胶质细胞的激活和血液衍生的髓样细胞向脊髓的募集对于运动回路的突触可塑性都是必要的。这项研究为触发远离损伤部位的中枢神经系统区域发生主要网络可塑性的机制提供了新的认识,并可能阻止功能的完全恢复,即使在成功再生之后也是如此。