Suppr超能文献

用于第二近红外光窗口光声分子成像的微型金纳米棒。

Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window.

机构信息

Department of Radiology, School of Medicine, Canary Centre for Cancer Early Detection, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA.

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

出版信息

Nat Nanotechnol. 2019 May;14(5):465-472. doi: 10.1038/s41565-019-0392-3. Epub 2019 Mar 4.

Abstract

In photoacoustic imaging, the second near-infrared (NIR-II) window is where tissue generates the least background signal. However, the large size of the few available contrast agents in this spectral range impedes their pharmacokinetics and decreases their thermal stability, leading to unreliable photoacoustic imaging. Here, we report the synthesis of miniaturized gold nanorods absorbing in the NIR-II that are 5-11 times smaller than regular-sized gold nanorods with a similar aspect ratio. Under nanosecond pulsed laser illumination, small nanorods are about 3 times more thermally stable and generate 3.5 times stronger photoacoustic signal than their absorption-matched larger counterparts. These unexpected findings are confirmed using theoretical and numerical analysis, showing that photoacoustic signal is not only proportional to the optical absorption of the nanoparticle solution but also to the surface-to-volume ratio of the nanoparticles. In living tumour-bearing mice, these small targeted nanorods display a 30% improvement in efficiency of agent delivery to tumours and generate 4.5 times greater photoacoustic contrast.

摘要

在光声成象中,第二个近红外(NIR-II)窗口是组织产生背景信号最少的地方。然而,该光谱范围内可用的少数几种对比剂体积较大,阻碍了它们的药代动力学,降低了它们的热稳定性,导致光声成象不可靠。在这里,我们报告了在 NIR-II 中吸收的小型化金纳米棒的合成,其尺寸比具有相似纵横比的常规金纳米棒小 5-11 倍。在纳秒脉冲激光照射下,小纳米棒的热稳定性约高 3 倍,产生的光声信号比吸收匹配的较大纳米棒强 3.5 倍。这些意想不到的发现得到了理论和数值分析的证实,表明光声信号不仅与纳米粒子溶液的光吸收成正比,还与纳米粒子的表面积与体积比成正比。在携带肿瘤的活小鼠中,这些靶向小纳米棒向肿瘤输送药物的效率提高了 30%,产生的光声对比提高了 4.5 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b543/6506383/8b79f4b8d4ab/nihms-1519712-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验