Suppr超能文献

外切体和小细胞外囊泡分离与表征的非对称流场流分离技术。

Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization.

机构信息

Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics and Department of Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.

出版信息

Nat Protoc. 2019 Apr;14(4):1027-1053. doi: 10.1038/s41596-019-0126-x. Epub 2019 Mar 4.

Abstract

We describe the protocol development and optimization of asymmetric-flow field-flow fractionation (AF4) technology for separating and characterizing extracellular nanoparticles (ENPs), particularly small extracellular vesicles (sEVs), known as exosomes, and even smaller novel nanoparticles, known as exomeres. This technique fractionates ENPs on the basis of hydrodynamic size and demonstrates a unique capability to separate nanoparticles with sizes ranging from a few nanometers to an undefined level of micrometers. ENPs are resolved by two perpendicular flows-channel flow and cross-flow-in a thin, flat channel with a semi-permissive bottom wall membrane. The AF4 separation method offers several advantages over other isolation methods for ENP analysis, including being label-free, gentle, rapid (<1 h) and highly reproducible, as well as providing efficient recovery of analytes. Most importantly, in contrast to other available techniques, AF4 can separate ENPs at high resolution (1 nm) and provide a large dynamic range of size-based separation. In conjunction with real-time monitors, such as UV absorbance and dynamic light scattering (DLS), and an array of post-separation characterizations, AF4 facilitates the successful separation of distinct subsets of exosomes and the identification of exomeres. Although the whole procedure of cell culture and ENP isolation from the conditioned medium by ultracentrifugation (UC) can take ~3 d, the AF4 fractionation step takes only 1 h. Users of this technology will require expertise in the working principle of AF4 to operate and customize protocol applications. AF4 can contribute to the development of high-quality, exosome- and exomere-based molecular diagnostics and therapeutics.

摘要

我们描述了不对称流场流分离(AF4)技术的协议开发和优化,用于分离和表征细胞外纳米颗粒(ENPs),特别是小细胞外囊泡(sEVs),也称为外泌体,甚至更小的新型纳米颗粒,也称为外泌体。该技术基于流体动力学大小对 ENPs 进行分离,并展示了独特的能力,可以分离尺寸从几纳米到不确定的微米级的纳米颗粒。ENPs 通过两个垂直流-通道流和横流-在薄而平的通道中分离,该通道具有半允许的底部壁膜。AF4 分离方法与 ENP 分析的其他分离方法相比具有多个优点,包括无标记、温和、快速(<1 h)和高度可重现,以及有效地回收分析物。最重要的是,与其他可用技术相比,AF4 可以在高分辨率(1nm)下分离 ENPs,并提供基于大小的分离的大动态范围。与实时监测器(如紫外吸收和动态光散射(DLS))以及一系列分离后的特征分析相结合,AF4 有助于成功分离不同的外泌体子集,并鉴定外泌体。虽然从条件培养基中通过超速离心(UC)进行细胞培养和 ENP 分离的整个过程可能需要~3 天,但 AF4 分级分离步骤仅需 1 小时。使用这项技术的用户将需要具备 AF4 的工作原理方面的专业知识才能进行操作和定制协议应用。AF4 可以为高质量的基于外泌体和外泌体的分子诊断和治疗方法的发展做出贡献。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验