Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
Angew Chem Int Ed Engl. 2019 May 6;58(19):6300-6305. doi: 10.1002/anie.201901141. Epub 2019 Apr 3.
Heterochromatin protein 1α (HP1α) undergoes liquid-liquid phase separation (LLPS) and forms liquid droplets and gels in vitro, properties that also appear to be central to its biological function in heterochromatin compaction and regulation. Here we use solid-state NMR spectroscopy to track the conformational dynamics of phosphorylated HP1α during its transformation from the liquid to the gel state. Using experiments designed to probe distinct dynamic modes, we identify regions with varying mobilities within HP1α molecules and show that specific serine residues uniquely contribute to gel formation. The addition of chromatin disturbs the gelation process while preserving the conformational dynamics within individual bulk HP1α molecules. Our study provides a glimpse into the dynamic architecture of dense HP1α phases and showcases the potential of solid-state NMR to detect an elusive biophysical regime of phase separating biomolecules.
异染色质蛋白 1α(HP1α)在体外经历液-液相分离(LLPS)并形成液滴和凝胶,这些性质似乎也是其在异染色质紧缩和调控中的生物学功能的核心。在这里,我们使用固态 NMR 光谱学来跟踪磷酸化 HP1α 在从液相到凝胶相转变过程中的构象动力学。使用旨在探测不同动态模式的实验,我们确定了 HP1α 分子内具有不同迁移率的区域,并表明特定丝氨酸残基独特地有助于凝胶形成。染色质的添加会干扰凝胶化过程,同时保持单个大块 HP1α 分子内的构象动力学。我们的研究提供了对密集 HP1α 相动态结构的初步了解,并展示了固态 NMR 检测难以捉摸的相分离生物分子的生物物理状态的潜力。