Kunkel Christian, Margraf Johannes T, Chen Ke, Oberhofer Harald, Reuter Karsten
Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany.
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
Nat Commun. 2021 Apr 23;12(1):2422. doi: 10.1038/s41467-021-22611-4.
The versatility of organic molecules generates a rich design space for organic semiconductors (OSCs) considered for electronics applications. Offering unparalleled promise for materials discovery, the vastness of this design space also dictates efficient search strategies. Here, we present an active machine learning (AML) approach that explores an unlimited search space through consecutive application of molecular morphing operations. Evaluating the suitability of OSC candidates on the basis of charge injection and mobility descriptors, the approach successively queries predictive-quality first-principles calculations to build a refining surrogate model. The AML approach is optimized in a truncated test space, providing deep methodological insight by visualizing it as a chemical space network. Significantly outperforming a conventional computational funnel, the optimized AML approach rapidly identifies well-known and hitherto unknown molecular OSC candidates with superior charge conduction properties. Most importantly, it constantly finds further candidates with highest efficiency while continuing its exploration of the endless design space.
有机分子的多功能性为电子应用中的有机半导体(OSC)创造了丰富的设计空间。这个广阔的设计空间为材料发现带来了无与伦比的前景,但也需要高效的搜索策略。在此,我们提出一种主动机器学习(AML)方法,通过连续应用分子变形操作来探索无限的搜索空间。该方法基于电荷注入和迁移率描述符评估OSC候选物的适用性,依次查询具有预测质量的第一性原理计算,以构建一个精炼的替代模型。AML方法在一个截断的测试空间中进行了优化,通过将其可视化为化学空间网络,提供了深入的方法学见解。优化后的AML方法显著优于传统的计算流程,能够快速识别出具有优异电荷传导特性的知名和未知分子OSC候选物。最重要的是,它在继续探索无限设计空间的同时,不断以最高效率找到更多候选物。