Suppr超能文献

用于个性化他汀类药物治疗和机器学习的大数据队列提取

Big Data Cohort Extraction for Personalized Statin Treatment and Machine Learning.

作者信息

Adam Terrence J, Chi Chih-Lin

机构信息

Department of Pharmaceutical Care and Health Systems, Health Informatics, Social and Administrative Pharmacy, University of Minnesota College of Pharmacy, Minneapolis, MN, USA.

University of Minnesota School of Nursing, Minneapolis, MN, USA.

出版信息

Methods Mol Biol. 2019;1939:255-272. doi: 10.1007/978-1-4939-9089-4_14.

Abstract

The creation of big clinical data cohorts for machine learning and data analysis require a number of steps from the beginning to successful completion. Similar to data set preprocessing in other fields, there is an initial need to complete data quality evaluation; however, with large heterogeneous clinical data sets, it is important to standardize the data in order to facilitate dimensionality reduction. This is particularly important for clinical data sets including medications as a core data component due to the complexity of coded medication data. Data integration at the individual subject level is essential with medication-related machine learning applications since it can be difficult to accurately identify drug exposures, therapeutic effects, and adverse drug events without having high-quality data integration of insurance, medication, and medical data. Successful data integration and standardization efforts can substantially improve the ability to identify and replicate personalized treatment pathways to optimize drug therapy.

摘要

创建用于机器学习和数据分析的大型临床数据群组需要从开始到成功完成多个步骤。与其他领域的数据集预处理类似,最初需要完成数据质量评估;然而,对于大型异构临床数据集,为便于降维而对数据进行标准化很重要。这对于将药物作为核心数据组件的临床数据集尤为重要,因为编码药物数据很复杂。在个体受试者层面进行数据整合对于与药物相关的机器学习应用至关重要,因为如果没有高质量的保险、药物和医疗数据整合,就很难准确识别药物暴露、治疗效果和药物不良事件。成功的数据整合和标准化工作可以大幅提高识别和复制个性化治疗路径以优化药物治疗的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验