Suppr超能文献

儿童 9 至 12 岁时大脑后顶叶对视觉网络特化发展的影响:一项 fMRI 研究的功能连接

Posterior parietal influences on visual network specialization during development: An fMRI study of functional connectivity in children ages 9 to 12.

机构信息

Department of Psychology, Stony Brook University, USA.

Department of Psychology, Stony Brook University, USA.

出版信息

Neuropsychologia. 2019 Apr;127:158-170. doi: 10.1016/j.neuropsychologia.2019.03.001. Epub 2019 Mar 5.

Abstract

Visual processing in the primate brain is highly organized along the ventral visual pathway, although it is still unclear how categorical selectivity emerges in this system. While many theories have attempted to explain the pattern of visual specialization within the ventral occipital and temporal areas, the biased connectivity hypothesis provides a framework which postulates extrinsic connectivity as a potential mechanism in shaping the development of category selectivity. As the posterior parietal cortex plays a central role in visual attention, we examined whether the pattern of parietal connectivity with the face and scene processing regions is closely linked with the functional properties of these two visually selective networks in a cohort of 60 children ages 9 to 12. Functionally localized face and scene selective regions were used in deriving each visual network's resting-state functional connectivity. The children's face and scene processing networks appeared to show a weak network segregation during resting state, which was confirmed when compared to that of a group of gender and handedness matched adults. Parietal regions of these children showed differential connectivity with the face and scene networks, and the extent of this differential parietal-visual connectivity predicted individual differences in the degree of segregation between the two visual networks, which in turn predicted individual differences in visual perception performance. Finally, the pattern of parietal connectivity with the face processing network also predicted the foci of face-related activation in the right fusiform gyrus across children. These findings provide evidence that extrinsic connectivity with regions such as the posterior parietal cortex may have important implications in the development of specialized visual processing networks.

摘要

灵长类动物大脑中的视觉处理沿着腹侧视觉通路高度组织,尽管目前尚不清楚类别选择性如何在该系统中出现。虽然许多理论试图解释腹侧枕叶和颞叶区域内的视觉专业化模式,但偏向连接假说提供了一个框架,假设外在连接是塑造类别选择性发展的潜在机制。由于顶后皮质在视觉注意力中起着核心作用,我们在一组 60 名 9 至 12 岁的儿童中检查了与面孔和场景处理区域的顶连接模式是否与这两个视觉选择性网络的功能特性密切相关。功能定位的面孔和场景选择性区域用于得出每个视觉网络的静息状态功能连接。与一组性别和惯用手匹配的成年人相比,这些儿童的面孔和场景处理网络在静息状态下似乎表现出较弱的网络分离,这一点得到了证实。这些儿童的顶叶区域与面孔和场景网络显示出不同的连接,这种差异顶叶-视觉连接的程度预测了两个视觉网络之间分离程度的个体差异,而这反过来又预测了视觉感知表现的个体差异。最后,与面孔处理网络的顶连接模式也预测了右梭状回中与面孔相关的激活焦点在儿童中的分布。这些发现提供了证据表明,与顶后皮质等区域的外在连接可能对专门化视觉处理网络的发展具有重要意义。

相似文献

1
Posterior parietal influences on visual network specialization during development: An fMRI study of functional connectivity in children ages 9 to 12.
Neuropsychologia. 2019 Apr;127:158-170. doi: 10.1016/j.neuropsychologia.2019.03.001. Epub 2019 Mar 5.
2
Functional connectivity at rest captures individual differences in visual search.
Brain Struct Funct. 2020 Mar;225(2):537-549. doi: 10.1007/s00429-019-02008-2. Epub 2020 Jan 2.
3
ACC and IPL networks in the perception of the faces of parents during selective tasks.
Brain Imaging Behav. 2016 Dec;10(4):1172-1183. doi: 10.1007/s11682-015-9486-1.
5
Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.
Brain Struct Funct. 2018 Jun;223(5):2113-2127. doi: 10.1007/s00429-018-1612-6. Epub 2018 Jan 29.
6
Effective Connectivity Reveals an Interconnected Inferotemporal Network for Three-Dimensional Structure Processing.
J Neurosci. 2020 Oct 28;40(44):8501-8512. doi: 10.1523/JNEUROSCI.3024-19.2020. Epub 2020 Oct 7.
7
Functional coupling between frontoparietal and occipitotemporal pathways during action and perception.
Cortex. 2018 Jan;98:8-27. doi: 10.1016/j.cortex.2016.10.020. Epub 2016 Nov 9.
9
Ventral fronto-parietal contributions to the disruption of visual working memory storage.
Neuroimage. 2016 Jan 1;124(Pt A):783-793. doi: 10.1016/j.neuroimage.2015.09.056. Epub 2015 Oct 3.
10
Connectivity-based constraints on category-specificity in the ventral object processing pathway.
Neuropsychologia. 2017 Oct;105:184-196. doi: 10.1016/j.neuropsychologia.2016.11.014. Epub 2016 Nov 19.

引用本文的文献

1
The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood.
Cereb Cortex. 2024 Mar 1;34(3). doi: 10.1093/cercor/bhae046.
2
Sex differences in development of functional connections in the face processing network.
J Neuroimaging. 2024 Mar-Apr;34(2):280-290. doi: 10.1111/jon.13185. Epub 2024 Jan 2.
3
Alternative Brain Connectivity Underscores Age-Related Differences in the Processing of Interactive Biological Motion.
J Neurosci. 2023 May 17;43(20):3666-3674. doi: 10.1523/JNEUROSCI.2109-22.2023. Epub 2023 Mar 24.
4
Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges.
Front Syst Neurosci. 2022 May 30;16:885304. doi: 10.3389/fnsys.2022.885304. eCollection 2022.
5
Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing.
Brain Struct Funct. 2021 Dec;226(9):3051-3065. doi: 10.1007/s00429-021-02384-8. Epub 2021 Oct 12.

本文引用的文献

1
A Generic Mechanism for Perceptual Organization in the Parietal Cortex.
J Neurosci. 2018 Aug 8;38(32):7158-7169. doi: 10.1523/JNEUROSCI.0436-18.2018. Epub 2018 Jul 13.
3
Seeing faces is necessary for face-domain formation.
Nat Neurosci. 2017 Oct;20(10):1404-1412. doi: 10.1038/nn.4635. Epub 2017 Sep 4.
4
The Functional Neuroanatomy of Human Face Perception.
Annu Rev Vis Sci. 2017 Sep 15;3:167-196. doi: 10.1146/annurev-vision-102016-061214. Epub 2017 Jul 17.
5
Bottom-up and top-down computations in word- and face-selective cortex.
Elife. 2017 Feb 22;6:e22341. doi: 10.7554/eLife.22341.
6
Organization of high-level visual cortex in human infants.
Nat Commun. 2017 Jan 10;8:13995. doi: 10.1038/ncomms13995.
7
Microstructural proliferation in human cortex is coupled with the development of face processing.
Science. 2017 Jan 6;355(6320):68-71. doi: 10.1126/science.aag0311.
8
The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex.
Cereb Cortex. 2017 Jan 1;27(1):146-161. doi: 10.1093/cercor/bhw361.
9
Reading in dyslexia across literacy development: A longitudinal study of effective connectivity.
Neuroimage. 2017 Jan 1;144(Pt A):92-100. doi: 10.1016/j.neuroimage.2016.09.060. Epub 2016 Sep 26.
10
Connectivity precedes function in the development of the visual word form area.
Nat Neurosci. 2016 Sep;19(9):1250-5. doi: 10.1038/nn.4354. Epub 2016 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验