NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA; Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.
NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
Methods. 2019 Aug 15;166:66-73. doi: 10.1016/j.ymeth.2019.03.004. Epub 2019 Mar 7.
Integration of multi-omics in cardiovascular diseases (CVDs) presents high potentials for translational discoveries. By analyzing abundance levels of heterogeneous molecules over time, we may uncover biological interactions and networks that were previously unidentifiable. However, to effectively perform integrative analysis of temporal multi-omics, computational methods must account for the heterogeneity and complexity in the data. To this end, we performed unsupervised classification of proteins and metabolites in mice during cardiac remodeling using two innovative deep learning (DL) approaches. First, long short-term memory (LSTM)-based variational autoencoder (LSTM-VAE) was trained on time-series numeric data. The low-dimensional embeddings extracted from LSTM-VAE were then used for clustering. Second, deep convolutional embedded clustering (DCEC) was applied on images of temporal trends. Instead of a two-step procedure, DCEC performes a joint optimization for image reconstruction and cluster assignment. Additionally, we performed K-means clustering, partitioning around medoids (PAM), and hierarchical clustering. Pathway enrichment analysis using the Reactome knowledgebase demonstrated that DL methods yielded higher numbers of significant biological pathways than conventional clustering algorithms. In particular, DCEC resulted in the highest number of enriched pathways, suggesting the strength of its unified framework based on visual similarities. Overall, unsupervised DL is shown to be a promising analytical approach for integrative analysis of temporal multi-omics.
多组学在心血管疾病(CVDs)中的整合具有很高的转化发现潜力。通过随时间分析异质分子的丰度水平,我们可能会发现以前无法识别的生物学相互作用和网络。然而,为了有效地对时间性多组学进行综合分析,计算方法必须考虑到数据的异质性和复杂性。为此,我们使用两种创新的深度学习(DL)方法对心脏重构过程中小鼠的蛋白质和代谢物进行了无监督分类。首先,基于长短期记忆(LSTM)的变分自动编码器(LSTM-VAE)对时间序列数值数据进行了训练。然后,从 LSTM-VAE 中提取的低维嵌入用于聚类。其次,应用于时间趋势图像的深度卷积嵌入聚类(DCEC)。DCEC 不是执行两步过程,而是对图像重建和聚类分配进行联合优化。此外,我们还进行了 K-均值聚类、中位数分区(PAM)和层次聚类。使用 Reactome 知识库进行的途径富集分析表明,DL 方法产生的显著生物学途径数量高于传统聚类算法。特别是,DCEC 导致了最多的富集途径,这表明其基于视觉相似性的统一框架的强大。总体而言,无监督的 DL 被证明是一种很有前途的分析方法,可用于对时间性多组学进行综合分析。