Suppr超能文献

基于血液的脑脊液 Aβ 状态标志物。

A blood-based signature of cerebrospinal fluid Aβ status.

机构信息

IBM Research Australia, Carlton, Victoria, Australia.

Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia.

出版信息

Sci Rep. 2019 Mar 11;9(1):4163. doi: 10.1038/s41598-018-37149-7.

Abstract

It is increasingly recognized that Alzheimer's disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β (Aβ) may be an earlier indicator of Alzheimer's disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual's CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ levels and that the resulting model also validates reasonably across PET Aβ status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ status, the earliest risk indicator for AD, with high accuracy.

摘要

越来越多的人认识到,阿尔茨海默病(AD)在出现痴呆之前就已经存在,而β淀粉样蛋白的变化早在临床症状出现之前就已经发生。这些分子变化的早期检测是干预措施成功的关键方面,这些干预措施旨在减缓认知能力下降的速度。最近的证据表明,在两种已建立的测量淀粉样蛋白的方法中,脑脊液(CSF)β淀粉样蛋白(Aβ)的减少可能比从正电子发射断层扫描(PET)获得的淀粉样蛋白测量更早地指示阿尔茨海默病的风险。然而,CSF 采集具有高度侵入性和昂贵。相比之下,血液采集是常规进行的,具有微创性和廉价性。在这项工作中,我们使用机器学习方法开发了一种基于血液的特征,可以提供一种廉价且微创的个体 CSF 淀粉样蛋白状态估计。我们表明,从血浆分析物中得出的随机森林模型可以准确预测个体的 CSF Aβ 水平异常(低),表明 AD 风险(0.84 AUC,0.78 敏感性和 0.73 特异性)。模型的细化表明,仅 APOEε4 携带者状态和四种血浆分析物(CGA、Aβ、Eotaxin 3、APOE)就可以达到高精度。此外,我们在独立验证队列中表明,预测 CSF Aβ 水平异常的个体在 120 个月内过渡到 AD 诊断的速度明显快于预测 CSF Aβ 水平正常的个体,并且该模型在 PET Aβ 状态下也具有合理的验证(0.78 AUC)。这是第一项表明使用机器学习方法,使用血浆蛋白水平、年龄和 APOEε4 携带者状态,可以预测 CSF Aβ 状态,这是 AD 的最早风险指标,具有很高的准确性的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/370d/6409361/85a2439ec647/41598_2018_37149_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验