Tan Kelly, Keegan Philip, Rogers Miles, Lu Mingjian, Gosset James R, Charest Joe, Bale Shyam Sundhar
Draper, 555 Technology Square, Cambridge, MA 02138, USA.
Lab Chip. 2019 Apr 23;19(9):1556-1566. doi: 10.1039/c8lc01262h.
Microphysiological systems (MPSs) are dynamic cell culture systems that provide micro-environmental and external cues to support physiologically relevant, organ-specific functions. Recent progresses in MPS fabrication technologies have enabled the development of advanced models to capture microenvironments with physiological relevance, while increasing throughput and reducing material-based artefacts. In addition to conventional cell culture systems, advanced MPSs are emerging as ideal contenders for disease modeling and incorporation into drug screening. Since liver is a central organ for drug metabolism, liver-on-chip models have been developed to recapitulate hepatic microenvironment with varying complexities, while allowing long-term culture. Recently, we have developed a novel thermoplastic, oxygen-permeable MPS for primary human hepatocyte (PHH) culture. Herein, we have adapted and extended the MPS to a) a 96 microfluidic array (PREDICT-96 array) and b) integrated a novel, ultra-low volume, re-circulating pumping system (PREDICT-96 pump) - collectively known as the PREDICT-96 platform. The PREDICT-96 platform conforms to the industrial standard 96-well footprint and enables media re-circulation. First, we demonstrate the introduction of PHHs into the PREDICT-96 array using standard handling procedures for multi-well plates and allow cells to stabilize in static conditions. Next, we introduce recirculating flow into the bottom channel (using PREDICT-96 pump) to mimic mass transport in vivo. Our results indicate an increase in metabolic and secretory functions of PHHs in the PREDICT-96 platform, and their maintenance over 10 days of flow. Furthermore, long-term culture with fluid flow allows for the periodic introduction of media components (e.g., fatty acids, cytokines) and capture cellular responses to chronic stimuli. The low-volume footprint of the pump and small media volume in the MPS allow for the interrogation of hepatic responses incorporating secretion feedback to a stimulus, which is essential for disease model development and drug interrogation. We envision future development of this liver model to incorporate key primary hepatic cells, multi-cellular co-cultures and adaptation, integration with high-throughput analytical tools.
微生理系统(MPSs)是动态细胞培养系统,可提供微环境和外部信号,以支持生理相关的器官特异性功能。MPS制造技术的最新进展已促成先进模型的开发,这些模型能够捕捉具有生理相关性的微环境,同时提高通量并减少基于材料的假象。除了传统的细胞培养系统外,先进的MPS正成为疾病建模和纳入药物筛选的理想候选者。由于肝脏是药物代谢的中心器官,因此已经开发出芯片肝模型来重现具有不同复杂性的肝微环境,同时允许长期培养。最近,我们开发了一种用于原代人肝细胞(PHH)培养的新型热塑性、透氧MPS。在此,我们将MPS进行了改进和扩展,使其成为:a)96微流控阵列(PREDICT-96阵列),以及b)集成了新型超低体积再循环泵系统(PREDICT-96泵)——统称为PREDICT-96平台。PREDICT-96平台符合工业标准的96孔规格,并能够实现培养基再循环。首先,我们展示了使用多孔板的标准操作程序将PHH引入PREDICT-96阵列,并让细胞在静态条件下稳定下来。接下来,我们将再循环流引入底部通道(使用PREDICT-96泵)以模拟体内的物质运输。我们的结果表明,PREDICT-96平台中PHH的代谢和分泌功能有所增加,并且在10天的流动过程中得以维持。此外,流体流动的长期培养允许定期引入培养基成分(例如脂肪酸、细胞因子)并捕捉细胞对慢性刺激的反应。泵的小体积规格以及MPS中的小培养基体积允许探究包含对刺激的分泌反馈的肝脏反应,这对于疾病模型开发和药物研究至关重要。我们设想该肝脏模型的未来发展将纳入关键的原代肝细胞、多细胞共培养和适应性,以及与高通量分析工具的整合。