Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
Neuropharmacology. 2019 May 15;150:46-58. doi: 10.1016/j.neuropharm.2019.03.001. Epub 2019 Mar 8.
Decades of research have emphasized the importance of dopamine (DA) D1 receptor (D1R) mechanisms to dorsolateral prefrontal cortex (dlPFC) working memory function, and the hope that D1R agonists could be used to treat cognitive disorders. However, existing D1R agonists all have had high affinity for D1R, and engage β-arrestin signaling, and these agonists have suppressed task-related neuronal firing. The current study provides the first physiological characterization of a novel D1R agonist, PF-3628, with low affinity for D1R -more similar to endogenous DA actions- as well as little engagement of β-arrestin signaling. PF-3628 was applied by iontophoresis directly onto dlPFC neurons in aged rhesus monkeys performing a delay-dependent working memory task. Aged monkeys have naturally-occurring loss of DA, and naturally-occurring reductions in dlPFC neuronal firing and working memory performance. We found the first evidence of excitatory actions of a D1R agonist on dlPFC task-related firing, and this PF-3628 beneficial response was blocked by co-application of a D1R antagonist. These D1R actions likely occur on pyramidal cells, based on previous immunoelectron microscopic studies showing expression of D1R on layer III spines, and current microarray experiments showing that D1R are four times more prevalent in pyramidal cells than in parvalbumin-containing interneurons laser-captured from layer III of the human dlPFC. These results encourage the translation of D1R mechanisms from monkey to human, with the hope PF-3628 and related, novel D1R agonists will be more appropriate for enhancing dlPFC cognitive functions in patients with mental disorders.
几十年来的研究强调了多巴胺 (DA) D1 受体 (D1R) 机制对背外侧前额叶皮层 (dlPFC) 工作记忆功能的重要性,并且希望 D1R 激动剂可用于治疗认知障碍。然而,现有的 D1R 激动剂都对 D1R 具有高亲和力,并与β-arrestin 信号转导结合,这些激动剂抑制了与任务相关的神经元放电。本研究首次对一种新型 D1R 激动剂 PF-3628 进行了生理特征描述,该激动剂对 D1R 的亲和力较低-与内源性 DA 作用更相似-并且与β-arrestin 信号转导的结合较少。PF-3628 通过离子电渗直接应用于在执行延迟依赖工作记忆任务的老年恒河猴的 dlPFC 神经元。老年猴子自然会出现多巴胺丢失,以及 dlPFC 神经元放电和工作记忆性能自然下降。我们发现了 D1R 激动剂对 dlPFC 与任务相关放电的兴奋性作用的第一个证据,并且这种 PF-3628 有益反应被 D1R 拮抗剂的共同应用所阻断。这些 D1R 作用可能发生在锥体细胞上,这是基于先前的免疫电镜研究显示 D1R 表达在 III 层的棘突上,以及目前的微阵列实验显示 D1R 在锥体细胞中的表达比在从人 dlPFC 的 III 层激光捕获的含有 parvalbumin 的中间神经元中高出四倍。这些结果鼓励将 D1R 机制从猴子翻译到人类,希望 PF-3628 和相关的新型 D1R 激动剂将更适合增强精神障碍患者的 dlPFC 认知功能。