Suppr超能文献

使用具有密集连接的 U-Net 对超声图像中的提肌裂孔进行自动分割。

Automatic segmentation of levator hiatus from ultrasound images using U-net with dense connections.

机构信息

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People's Republic of China.

出版信息

Phys Med Biol. 2019 Apr 4;64(7):075015. doi: 10.1088/1361-6560/ab0ef4.

Abstract

In this paper, we propose a fully automatic method based on a densely connected convolutional network for the segmentation of the levator hiatus from ultrasound images. A densely connected path is incorporated into a U-net to achieve a deep architecture and improve the segmentation performance. The proposed network architecture provides dense connections between layers that encourage feature reuse and reduce the number of parameters while maintaining good performance. The parameters of the network are optimized by training with a binary cross entropy, i.e. logarithmic loss function. A dataset with 1000 levator hiatus images is used for training and 130 images are used for evaluating the performance of the proposed network architecture. The proposed model can get a mean Dice of [Formula: see text]. Experimental results show that the proposed method can achieve more accurate segmentation results than some of state-of-the-art methods.

摘要

本文提出了一种基于密集连接卷积网络的完全自动方法,用于对超声图像中的提肌裂孔进行分割。在 U 型网络中加入密集连接路径,实现了深层结构,提高了分割性能。所提出的网络架构在层与层之间提供了密集连接,鼓励特征重用,减少了参数数量,同时保持了良好的性能。通过使用二进制交叉熵,即对数损失函数,对网络参数进行优化。使用包含 1000 张提肌裂孔图像的数据集进行训练,并使用 130 张图像评估所提出的网络架构的性能。所提出的模型可以得到[公式:见文本]的平均骰子系数。实验结果表明,与一些最先进的方法相比,所提出的方法可以获得更准确的分割结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验