Suppr超能文献

阿尔茨海默病中动态生物标志物级联的计算因果建模。

Computational Causal Modeling of the Dynamic Biomarker Cascade in Alzheimer's Disease.

机构信息

Department of Radiology, Duke University Health System, Durham, NC, USA.

Department of Mathematics, Penn State University, State College, PA, USA.

出版信息

Comput Math Methods Med. 2019 Feb 3;2019:6216530. doi: 10.1155/2019/6216530. eCollection 2019.

Abstract

BACKGROUND

Alzheimer's disease (AD) is a major public health concern, and there is an urgent need to better understand its complex biology and develop effective therapies. AD progression can be tracked in patients through validated imaging and spinal fluid biomarkers of pathology and neuronal loss. We still, however, lack a coherent quantitative model that explains how these biomarkers interact and evolve over time. Such a model could potentially help identify the major drivers of disease in individual patients and simulate response to therapy prior to entry in clinical trials. A current theory of AD biomarker progression, known as the dynamic biomarker cascade model, hypothesizes AD biomarkers evolve in a sequential but temporally overlapping manner. A computational model incorporating assumptions about the underlying biology of this theory and its variations would be useful to test and refine its accuracy with longitudinal biomarker data from clinical trials.

METHODS

We implemented a causal model to simulate time-dependent biomarker data under the descriptive assumptions of the dynamic biomarker cascade theory. We modeled pathologic biomarkers (beta-amyloid and tau), neuronal loss biomarkers, and cognitive impairment as nonlinear first-order ordinary differential equations (ODEs) to include amyloid-dependent and nondependent neurodegenerative cascades. We tested the feasibility of the model by adjusting its parameters to simulate three specific natural history scenarios in early-onset autosomal dominant AD and late-onset AD and determine whether computed biomarker trajectories agreed with current assumptions of AD biomarker progression. We also simulated the effects of antiamyloid therapy in late-onset AD.

RESULTS

The computational model of early-onset AD demonstrated the initial appearance of amyloid, followed by biomarkers of tau and neurodegeneration and the onset of cognitive decline based on cognitive reserve, as predicted by the prior literature. Similarly, the late-onset AD computational models demonstrated the first appearance of amyloid or nonamyloid-related tauopathy, depending on the magnitude of comorbid pathology, and also closely matched the biomarker cascades predicted by the prior literature. Forward simulation of antiamyloid therapy in symptomatic late-onset AD failed to demonstrate any slowing in progression of cognitive decline, consistent with prior failed clinical trials in symptomatic patients.

CONCLUSIONS

We have developed and computationally implemented a mathematical causal model of the dynamic biomarker cascade theory in AD. We demonstrate the feasibility of this model by simulating biomarker evolution and cognitive decline in early- and late-onset natural history scenarios, as well as in a treatment scenario targeted at core AD pathology. Models resulting from this causal approach can be further developed and refined using patient data from longitudinal biomarker studies and may in the future play a key role in personalizing approaches to treatment.

摘要

背景

阿尔茨海默病(AD)是一个主要的公共卫生关注点,我们急需更好地了解其复杂的生物学,并开发有效的治疗方法。可以通过验证的影像学和脊髓液生物标志物来跟踪患者的 AD 进展,以了解疾病的病理和神经元的丢失。然而,我们仍然缺乏一个连贯的定量模型,来解释这些生物标志物是如何相互作用并随时间演变的。这样的模型可能有助于确定个体患者疾病的主要驱动因素,并在进入临床试验之前模拟对治疗的反应。目前,一种被称为动态生物标志物级联模型的 AD 生物标志物进展理论假设 AD 生物标志物以顺序但时间重叠的方式演变。一个包含该理论及其变体的基础生物学假设的计算模型,将有助于使用临床试验中的纵向生物标志物数据来测试和完善其准确性。

方法

我们实现了一个因果模型,以模拟动态生物标志物级联理论的描述性假设下的时间依赖生物标志物数据。我们将病理生物标志物(β-淀粉样蛋白和 tau)、神经元丢失生物标志物和认知障碍建模为非线性一阶常微分方程(ODE),以包括淀粉样蛋白依赖性和非依赖性神经退行性级联。我们通过调整模型参数来模拟早发性常染色体显性 AD 和晚发性 AD 的三种特定自然史场景,并确定计算出的生物标志物轨迹是否与 AD 生物标志物进展的当前假设一致,以此来测试模型的可行性。我们还模拟了晚发性 AD 中的抗淀粉样蛋白治疗的效果。

结果

早发性 AD 的计算模型基于认知储备,模拟了淀粉样蛋白的最初出现,随后是 tau 和神经退行性的生物标志物以及认知能力下降的发生,这与先前的文献预测相符。同样,晚发性 AD 的计算模型也显示了淀粉样蛋白或非淀粉样蛋白相关 tau 病的最初出现,具体取决于合并病理的严重程度,并且与先前文献中预测的生物标志物级联也非常吻合。在有症状的晚发性 AD 中进行抗淀粉样蛋白治疗的正向模拟未能显示认知能力下降的进展有任何减缓,这与先前在有症状患者中进行的失败的临床试验一致。

结论

我们已经开发并在 AD 中实现了动态生物标志物级联理论的数学因果模型。我们通过模拟早发性和晚发性自然史场景以及针对 AD 核心病理学的治疗场景中的生物标志物演变和认知能力下降,证明了该模型的可行性。这种因果方法得到的模型可以使用来自纵向生物标志物研究的患者数据进一步开发和完善,并且将来可能在个性化治疗方法中发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8cb/6378032/985648cbd710/CMMM2019-6216530.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验