Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China.
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125.
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7718-7722. doi: 10.1073/pnas.1821709116. Epub 2019 Mar 13.
Electrocatalysis provides a powerful means to selectively transform molecules, but a serious impediment in making rapid progress is the lack of a molecular-based understanding of the reactive mechanisms or intermediates at the electrode-electrolyte interface (EEI). Recent experimental techniques have been developed for operando identification of reaction intermediates using surface infrared (IR) and Raman spectroscopy. However, large noises in the experimental spectrum pose great challenges in resolving the atomistic structures of reactive intermediates. To provide an interpretation of these experimental studies and target for additional studies, we report the results from quantum mechanics molecular dynamics (QM-MD) with explicit consideration of solvent, electrode-electrolyte interface, and applied potential at 298 K, which conceptually resemble the operando experimental condition, leading to a prototype of operando QM-MD (o-QM-MD). With o-QM-MD, we characterize 22 possible reactive intermediates in carbon dioxide reduction reactions ([Formula: see text]RRs). Furthermore, we report the vibrational density of states (v-DoSs) of these intermediates from two-phase thermodynamic (2PT) analysis. Accordingly, we identify important intermediates such as chemisorbed [Formula: see text] ([Formula: see text]), *HOC-COH, *C-CH, and *C-COH in our o-QM-MD likely to explain the experimental spectrum. Indeed, we assign the experimental peak at 1,191 cm to the mode of C-O stretch in *HOC-COH predicted at 1,189 cm and the experimental peak at 1,584 cm to the mode of C-C stretch in *C-COD predicted at 1,581 cm Interestingly, we find that surface ketene (*C=C=O), arising from *HOC-COH dehydration, also shows signals at around 1,584 cm, which indicates a nonelectrochemical pathway of hydrocarbon formation at low overpotential and high pH conditions.
电催化为选择性转化分子提供了一种强大的手段,但在取得快速进展方面存在一个严重的障碍,即缺乏对电极-电解质界面 (EEI) 上反应机制或中间体的基于分子的理解。最近已经开发了一些实验技术,用于使用表面红外 (IR) 和拉曼光谱原位鉴定反应中间体。然而,实验谱中的大噪声给解析反应中间体的原子结构带来了巨大的挑战。为了对这些实验研究进行解释并为进一步的研究提供目标,我们报告了在 298 K 下考虑溶剂、电极-电解质界面和外加电势的量子力学分子动力学 (QM-MD) 的结果,这些结果在概念上类似于原位实验条件,导致了原位 QM-MD (o-QM-MD) 的原型。使用 o-QM-MD,我们对二氧化碳还原反应中的 22 种可能的反应中间体 ([Formula: see text]RRs) 进行了特征描述。此外,我们还通过两相热力学 (2PT) 分析报告了这些中间体的振动态密度 (v-DoSs)。因此,我们从 o-QM-MD 中识别出重要的中间体,如化学吸附的 [Formula: see text] ([Formula: see text])、*HOC-COH、*C-CH 和 *C-COH,这些中间体可能解释了实验光谱。事实上,我们将实验峰 1,191 cm 分配给预测在 1,189 cm 的 *HOC-COH 中 C-O 伸缩模式,将实验峰 1,584 cm 分配给预测在 1,581 cm 的 *C-COD 中 C-C 伸缩模式。有趣的是,我们发现,来自 *HOC-COH 脱水的表面烯酮 (*C=C=O) 也在大约 1,584 cm 处显示出信号,这表明在低过电势和高 pH 条件下存在烃形成的非电化学途径。