George Jonathan K, Mehrabian Armin, Amin Rubab, Meng Jiawei, de Lima Thomas Ferreira, Tait Alexander N, Shastri Bhavin J, El-Ghazawi Tarek, Prucnal Paul R, Sorger Volker J
Opt Express. 2019 Feb 18;27(4):5181-5191. doi: 10.1364/OE.27.005181.
Photonic neural networks benefit from both the high-channel capacity and the wave nature of light acting as an effective weighting mechanism through linear optics. Incorporating a nonlinear activation function by using active integrated photonic components allows neural networks with multiple layers to be built monolithically, eliminating the need for energy and latency costs due to external conversion. Interferometer-based modulators, while popular in communications, have been shown to require more area than absorption-based modulators, resulting in a reduced neural network density. Here, we develop a model for absorption modulators in an electro-optic fully connected neural network, including noise, and compare the network's performance with the activation functions produced intrinsically by five types of absorption modulators. Our results show the quantum well absorption modulator-based electro-optic neuron has the best performance allowing for 96% prediction accuracy with 1.7×10 J/MAC excluding laser power when performing MNIST classification in a 2 hidden layer feed-forward photonic neural network.
光子神经网络受益于高通道容量以及光的波动特性,光通过线性光学起到有效的加权机制。通过使用有源集成光子组件纳入非线性激活函数,可单片构建多层神经网络,消除了由于外部转换导致的能量和延迟成本。基于干涉仪的调制器虽然在通信中很常见,但已证明其所需面积比基于吸收的调制器更大,从而导致神经网络密度降低。在此,我们为电光全连接神经网络中的吸收调制器开发了一个模型,包括噪声,并将该网络的性能与五种类型的吸收调制器固有产生的激活函数进行比较。我们的结果表明,基于量子阱吸收调制器的电光神经元具有最佳性能,在2隐藏层前馈光子神经网络中执行MNIST分类时,在不包括激光功率的情况下,每MAC运算量为1.7×10焦耳时预测准确率可达96%。