Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
Sci Rep. 2023 Aug 17;13(1):13380. doi: 10.1038/s41598-023-40179-5.
Helicobacter pylori (H. pylori) infection is the principal cause of chronic gastritis, gastric ulcers, duodenal ulcers, and gastric cancer. In clinical practice, diagnosis of H. pylori infection by a gastroenterologists' impression of endoscopic images is inaccurate and cannot be used for the management of gastrointestinal diseases. The aim of this study was to develop an artificial intelligence classification system for the diagnosis of H. pylori infection by pre-processing endoscopic images and machine learning methods. Endoscopic images of the gastric body and antrum from 302 patients receiving endoscopy with confirmation of H. pylori status by a rapid urease test at An Nan Hospital were obtained for the derivation and validation of an artificial intelligence classification system. The H. pylori status was interpreted as positive or negative by Convolutional Neural Network (CNN) and Concurrent Spatial and Channel Squeeze and Excitation (scSE) network, combined with different classification models for deep learning of gastric images. The comprehensive assessment for H. pylori status by scSE-CatBoost classification models for both body and antrum images from same patients achieved an accuracy of 0.90, sensitivity of 1.00, specificity of 0.81, positive predictive value of 0.82, negative predicted value of 1.00, and area under the curve of 0.88. The data suggest that an artificial intelligence classification model using scSE-CatBoost deep learning for gastric endoscopic images can distinguish H. pylori status with good performance and is useful for the survey or diagnosis of H. pylori infection in clinical practice.
幽门螺杆菌(H. pylori)感染是慢性胃炎、胃溃疡、十二指肠溃疡和胃癌的主要原因。在临床实践中,由胃肠病学家对内镜图像的印象来诊断 H. pylori 感染的准确性不高,不能用于胃肠道疾病的管理。本研究旨在通过预处理内镜图像和机器学习方法开发用于诊断 H. pylori 感染的人工智能分类系统。从在安南医院接受内镜检查并通过快速尿素酶试验确认 H. pylori 状态的 302 名患者中获得胃体和胃窦的内镜图像,用于人工智能分类系统的推导和验证。通过卷积神经网络(CNN)和并发空间和通道挤压和激励(scSE)网络将 H. pylori 状态解释为阳性或阴性,结合不同的分类模型对胃图像进行深度学习。来自同一患者的 scSE-CatBoost 分类模型对胃体和胃窦图像的 H. pylori 状态进行综合评估,其准确率为 0.90,灵敏度为 1.00,特异性为 0.81,阳性预测值为 0.82,阴性预测值为 1.00,曲线下面积为 0.88。数据表明,使用 scSE-CatBoost 深度学习对胃内镜图像进行人工智能分类模型可以很好地区分 H. pylori 状态,对临床实践中 H. pylori 感染的调查或诊断具有一定的应用价值。