Shekarriz Erfan, Chen Jiawei, Xu Zhimeng, Liu Hongbin
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China.
Microbiol Spectr. 2023 Mar 13;11(2):e0197822. doi: 10.1128/spectrum.01978-22.
Cold seeps are biological oases of the deep sea fueled by methane, sulfates, nitrates, and other inorganic sources of energy. Chemolithoautotrophic bacteria and archaea dominate seep sediment, and their diversity and biogeochemical functions are well established. Fungi are likewise diverse, metabolically versatile, and known for their ability to capture and oxidize methane. Still, no study has ever explored the functional role of the mycobiota in the cold seep biome. To assess the complex role of fungi and fill in the gaps, we performed network analysis on 147 samples to disentangle fungal-prokaryotic interactions (fungal 18S and prokaryotic 16S) in the Haima cold seep region. We demonstrated that fungi are central species with high connectivity at the epicenter of prokaryotic networks, reduce their random-attack vulnerability by 60%, and enhance information transfer efficiency by 15%. We then scavenged a global metagenomic and metatranscriptomic data set from 10 cold seep regions for fungal genes of interest (hydrophobins, cytochrome P450s, and ligninolytic family of enzymes); this is the first study to report active transcription of 2,500+ fungal genes in the cold seep sediment. The genera Fusarium and were of notable importance and directly correlated with high methane abundance in the sulfate-methane transition zone (SMTZ), likely due to their ability to degrade and solubilize methane and oils. Overall, our results highlight the essential yet overlooked contribution of fungi to cold seep biological networks and the role of fungi in regulating cold seep biogeochemistry. The challenges we face when analyzing eukaryotic metagenomic and metatranscriptomic data sets have hindered our understanding of cold seep fungi and microbial eukaryotes. This fact does not make the mycobiota any less critical in mediating cold seep biogeochemistry. On the contrary, many fungal genera can oxidize and solubilize methane, produce methane, and play a unique role in nutrient recycling via saprotrophic enzymatic activity. In this study, we used network analysis to uncover key fungal-prokaryotic interactions that can mediate methane biogeochemistry and metagenomics and metatranscriptomics to report that fungi are transcriptionally active in the cold seep sediment. With concerns over rising methane levels and cold seeps being a pivotal source of global methane input, our holistic understanding of methane biogeochemistry with all domains of life is essential. We ultimately encourage scientists to utilize state-of-the-art tools and multifaceted approaches to uncover the role of microeukaryotic organisms in understudied systems.
冷泉是深海中的生物绿洲,由甲烷、硫酸盐、硝酸盐和其他无机能源提供养分。化能自养细菌和古菌在冷泉沉积物中占主导地位,它们的多样性和生物地球化学功能已得到充分证实。真菌同样具有多样性,代谢功能多样,并且以其捕获和氧化甲烷的能力而闻名。然而,尚无研究探索过真菌群落在冷泉生物群落中的功能作用。为了评估真菌的复杂作用并填补空白,我们对147个样本进行了网络分析,以解析海马冷泉区域中真菌与原核生物的相互作用(真菌18S和原核生物16S)。我们证明,真菌是原核生物网络中心具有高连接性的核心物种,将其随机攻击脆弱性降低了60%,并将信息传递效率提高了15%。然后,我们从10个冷泉区域的全球宏基因组和宏转录组数据集中筛选出感兴趣的真菌基因(疏水蛋白、细胞色素P450和木质素分解酶家族);这是第一项报道在冷泉沉积物中有2500多个真菌基因活跃转录的研究。镰刀菌属和其他属具有显著重要性,并且与硫酸盐 - 甲烷过渡带(SMTZ)中高甲烷丰度直接相关,这可能是由于它们具有降解和溶解甲烷及石油的能力。总体而言,我们的结果突出了真菌对冷泉生物网络的重要但被忽视的贡献,以及真菌在调节冷泉生物地球化学中的作用。我们在分析真核生物宏基因组和宏转录组数据集时面临的挑战阻碍了我们对冷泉真菌和微生物真核生物的理解。但这一事实并不意味着真菌群落在介导冷泉生物地球化学方面不那么关键。相反,许多真菌属能够氧化和溶解甲烷、产生甲烷,并通过腐生酶活性在养分循环中发挥独特作用。在本研究中,我们使用网络分析揭示了可介导甲烷生物地球化学的关键真菌 - 原核生物相互作用,并通过宏基因组学和宏转录组学报告真菌在冷泉沉积物中具有转录活性。鉴于对甲烷水平上升的担忧以及冷泉是全球甲烷输入的关键来源,我们对甲烷生物地球化学与所有生命领域的全面理解至关重要。我们最终鼓励科学家利用先进工具和多方面方法来揭示微真核生物在研究不足的系统中的作用。