Bernstein Brett, Liu Sheng, Papadaniil Chrysa, Fernandez-Granda Carlos
Courant Institute of Mathematical Sciences, New York University, New York, NY 10011 USA.
Center for Data Science, New York University, New York, NY 10011 USA.
IEEE Trans Inf Theory. 2020 Sep;66(9):5904-5926. doi: 10.1109/tit.2020.2985015. Epub 2020 Apr 1.
Extracting information from nonlinear measurements is a fundamental challenge in data analysis. In this work, we consider separable inverse problems, where the data are modeled as a linear combination of functions that depend nonlinearly on certain parameters of interest. These parameters may represent neuronal activity in a human brain, frequencies of electromagnetic waves, fluorescent probes in a cell, or magnetic relaxation times of biological tissues. Separable nonlinear inverse problems can be reformulated as underdetermined sparse-recovery problems, and solved using convex programming. This approach has had empirical success in a variety of domains, from geophysics to medical imaging, but lacks a theoretical justification. In particular, compressed-sensing theory does not apply, because the measurement operators are deterministic and violate incoherence conditions such as the restricted-isometry property. Our main contribution is a theory for sparse recovery adapted to deterministic settings. We show that convex programming succeeds in recovering the parameters of interest, as long as their values are sufficiently distinct with respect to the correlation structure of the measurement operator. The theoretical results are illustrated through numerical experiments for two applications: heat-source localization and estimation of brain activity from electroencephalography data.
从非线性测量中提取信息是数据分析中的一项基本挑战。在这项工作中,我们考虑可分离的逆问题,其中数据被建模为函数的线性组合,这些函数非线性地依赖于某些感兴趣的参数。这些参数可能代表人类大脑中的神经元活动、电磁波频率、细胞中的荧光探针或生物组织的磁弛豫时间。可分离的非线性逆问题可以重新表述为欠定稀疏恢复问题,并使用凸规划求解。这种方法在从地球物理学到医学成像的各种领域都取得了经验上的成功,但缺乏理论依据。特别是,压缩感知理论并不适用,因为测量算子是确定性的,并且违反了诸如受限等距性质等不相干条件。我们的主要贡献是一种适用于确定性设置的稀疏恢复理论。我们表明,只要感兴趣的参数值相对于测量算子的相关结构足够不同,凸规划就能成功恢复这些参数。通过针对两个应用的数值实验说明了理论结果:热源定位和从脑电图数据估计大脑活动。