Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States.
Wake Forest Center for Integrative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.
Front Immunol. 2019 Mar 4;10:266. doi: 10.3389/fimmu.2019.00266. eCollection 2019.
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of synovium (synovitis), with inflammatory/immune cells and resident fibroblast-like synoviocytes (FLS) acting as major players in the pathogenesis of this disease. The resulting inflammatory response poses considerable risks as loss of bone and cartilage progresses, destroying the joint surface, causing joint damage, joint failure, articular dysfunction, and pre-mature death if left untreated. At the cellular level, early changes in RA synovium include inflammatory cell infiltration, synovial hyperplasia, and stimulation of angiogenesis to the site of injury. Different angiogenic factors promote this disease, making the role of anti-angiogenic therapy a focus of RA treatment. To control angiogenesis, mesenchymal stromal cells/pericytes (MSCs) in synovial tissue play a vital role in tissue repair. While recent evidence reports that MSCs found in joint tissues can differentiate to repair damaged tissue, this repair function can be repressed by the inflammatory milieu. Extremely-low frequency pulsed electromagnetic field (PEMF), a biophysical form of stimulation, has an anti-inflammatory effect by causing differentiation of MSCs. PEMF has also been reported to increase the functional activity of MSCs to improve differentiation to chondrocytes and osteocytes. Moreover, PEMF has been demonstrated to accelerate cell differentiation, increase deposition of collagen, and potentially return vascular dysfunction back to homeostasis. The aim of this report is to review the effects of PEMF on MSC modulation of cytokines, growth factors, and angiogenesis, and describe its effect on MSC regeneration of synovial tissue to further understand its potential role in the treatment of RA.
类风湿关节炎(RA)是一种系统性自身免疫性疾病,其特征为滑膜(滑膜炎)慢性炎症,炎症/免疫细胞和固有成纤维样滑膜细胞(FLS)是这种疾病发病机制的主要参与者。由于骨和软骨的不断流失,炎症反应会导致关节表面受损,引起关节破坏、关节衰竭、关节功能障碍,如果不加以治疗,甚至会导致提前死亡。在细胞水平上,RA 滑膜的早期变化包括炎症细胞浸润、滑膜增生和刺激血管向损伤部位生成。不同的血管生成因子促进了这种疾病的发展,使得抗血管生成治疗成为 RA 治疗的重点。为了控制血管生成,滑膜组织中的间充质基质细胞/周细胞(MSCs)在组织修复中起着至关重要的作用。虽然最近的证据表明关节组织中发现的 MSC 可以分化为受损组织的修复细胞,但这种修复功能会被炎症环境所抑制。极低频率脉冲电磁场(PEMF)是一种生物物理刺激形式,通过诱导 MSC 分化产生抗炎作用。有报道称,PEMF 还可以提高 MSC 的功能活性,促进其向软骨细胞和成骨细胞分化。此外,PEMF 已被证明可以加速细胞分化,增加胶原蛋白的沉积,并有可能使血管功能障碍恢复到正常状态。本报告旨在综述 PEMF 对 MSC 调节细胞因子、生长因子和血管生成的影响,并描述其对滑膜组织 MSC 再生的作用,以进一步了解其在 RA 治疗中的潜在作用。
Arthritis Res Ther. 2015-5-1
Curr Stem Cell Res Ther. 2009-1
Regen Ther. 2025-2-13
Arthritis Res Ther. 2025-2-14
Front Cell Death. 2023
Mater Today Bio. 2025-1-9
Stem Cells Int. 2018-6-14
Int J Mol Sci. 2018-7-10
Korean J Physiol Pharmacol. 2018-1
Mol Immunol. 2018-1
Nat Rev Mol Cell Biol. 2017-11-8
Autoimmun Rev. 2017-4-14