Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Department of Computational Medicine & Bioinformatics, Ann Arbor, MI, USA.
Bioinformatics. 2019 Sep 15;35(18):3441-3452. doi: 10.1093/bioinformatics/btz114.
Functional enrichment testing methods can reduce data comprising hundreds of altered biomolecules to smaller sets of altered biological 'concepts' that help generate testable hypotheses. This study leveraged differential network enrichment analysis methodology to identify and validate lipid subnetworks that potentially differentiate chronic kidney disease (CKD) by severity or progression.
We built a partial correlation interaction network, identified highly connected network components, applied network-based gene-set analysis to identify differentially enriched subnetworks, and compared the subnetworks in patients with early-stage versus late-stage CKD. We identified two subnetworks 'triacylglycerols' and 'cardiolipins-phosphatidylethanolamines (CL-PE)' characterized by lower connectivity, and a higher abundance of longer polyunsaturated triacylglycerols in patients with severe CKD (stage ≥4) from the Clinical Phenotyping Resource and Biobank Core. These finding were replicated in an independent cohort, the Chronic Renal Insufficiency Cohort. Using an innovative method for elucidating biological alterations in lipid networks, we demonstrated alterations in triacylglycerols and cardiolipins-phosphatidylethanolamines that precede the clinical outcome of end-stage kidney disease by several years.
A complete list of NetGSA results in HTML format can be found at http://metscape.ncibi.org/netgsa/12345-022118/cric_cprobe/022118/results_cric_cprobe/main.html. The DNEA is freely available at https://github.com/wiggie/DNEA. Java wrapper leveraging the cytoscape.js framework is available at http://js.cytoscape.org.
Supplementary data are available at Bioinformatics online.
功能富集测试方法可以将包含数百种改变的生物分子的数据减少到更小的改变的生物学“概念”集合,这有助于生成可测试的假设。本研究利用差异网络富集分析方法,鉴定和验证潜在区分慢性肾脏病(CKD)严重程度或进展的脂质子网络。
我们构建了一个部分相关互作网络,鉴定了高度连接的网络组件,应用基于网络的基因集分析来鉴定差异富集的子网络,并比较了早期和晚期 CKD 患者的子网络。我们从临床表型资源和生物库核心中鉴定了两个特征为连接性较低和富含长链多不饱和三酰甘油的子网络“甘油三酯”和“心磷脂-磷脂酰乙醇胺(CL-PE)”,这些子网络在严重 CKD(≥4 期)患者中丰度较高。这些发现在一个独立的队列中,即慢性肾功能不全队列中得到了复制。使用一种新的方法阐明脂质网络中的生物学改变,我们证明了三酰甘油和心磷脂-磷脂酰乙醇胺的改变发生在终末期肾病的临床结果之前数年。
完整的 NetGSA 结果列表以 HTML 格式可在 http://metscape.ncibi.org/netgsa/12345-022118/cric_cprobe/022118/results_cric_cprobe/main.html 找到。DNEA 可在 https://github.com/wiggie/DNEA 免费获得。利用 cytoscape.js 框架的 Java 包装器可在 http://js.cytoscape.org 找到。
补充数据可在生物信息学在线获得。