Basu Sumanta, Duren William, Evans Charles R, Burant Charles F, Michailidis George, Karnovsky Alla
Department of Statistics, University of California, Berkeley, CA, USA.
Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Bioinformatics. 2017 May 15;33(10):1545-1553. doi: 10.1093/bioinformatics/btx012.
Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data.
Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds.
http://metscape.med.umich.edu.
Supplementary data are available at Bioinformatics online.
质谱技术的最新进展、更丰富的质谱图库的开发以及数据处理工具使得大规模代谢谱分析成为可能。代谢组学研究的生物学解释严重依赖于包含代谢途径信息的基于知识的工具。不同代谢领域的覆盖不完整以及代谢物之间非典型连接信息的缺乏限制了此类工具的应用范围。此外,存在大量无法轻易识别但仍可能代表真正化合物的未知特征,这也极大地复杂化了数据的生物学解释。
利用高维数据统计分析的最新进展,我们开发了一种用于估计偏相关网络的新的去偏稀疏偏相关算法(DSPC),并将其实现为基于Java的CorrelationCalculator程序。我们还引入了我们之前开发的工具Metscape的新版本,该版本能够构建和可视化相关网络。我们通过构建生物学相关网络并辅助鉴定未知化合物来证明这些工具的实用性。
http://metscape.med.umich.edu。
补充数据可在《生物信息学》在线获取。