Suppr超能文献

IntLIM 2.0:识别依赖于离散或连续表型测量的多组学关系。

IntLIM 2.0: identifying multi-omic relationships dependent on discrete or continuous phenotypic measurements.

作者信息

Eicher Tara, Spencer Kyle D, Siddiqui Jalal K, Machiraju Raghu, Mathé Ewy A

机构信息

Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20892, USA.

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Bioinform Adv. 2023 Feb 1;3(1):vbad009. doi: 10.1093/bioadv/vbad009. eCollection 2023.

Abstract

MOTIVATION

IntLIM uncovers phenotype-dependent linear associations between two types of analytes (e.g. genes and metabolites) in a multi-omic dataset, which may reflect chemically or biologically relevant relationships.

RESULTS

The new IntLIM R package includes newly added support for generalized data types, covariate correction, continuous phenotypic measurements, model validation and unit testing. IntLIM analysis uncovered biologically relevant gene-metabolite associations in two separate datasets, and the run time is improved over baseline R functions by multiple orders of magnitude.

AVAILABILITY AND IMPLEMENTATION

IntLIM is available as an R package with a detailed vignette (https://github.com/ncats/IntLIM) and as an R Shiny app (see Supplementary Figs S1-S6) (https://intlim.ncats.io/).

SUPPLEMENTARY INFORMATION

Supplementary data are available at online.

摘要

动机

IntLIM在多组学数据集中揭示了两种类型分析物(如基因和代谢物)之间依赖表型的线性关联,这可能反映了化学或生物学上的相关关系。

结果

新的IntLIM R包包括对广义数据类型、协变量校正、连续表型测量、模型验证和单元测试的新支持。IntLIM分析在两个独立的数据集中发现了生物学上相关的基因-代谢物关联,并且运行时间比基线R函数提高了多个数量级。

可用性和实现方式

IntLIM作为一个带有详细 vignette 的R包(https://github.com/ncats/IntLIM)以及一个R Shiny应用程序(见补充图S1 - S6)(https://intlim.ncats.io/)提供。

补充信息

补充数据可在网上获取。

相似文献

5
MoNET: an R package for multi-omic network analysis.MoNET:用于多组学网络分析的 R 包。
Bioinformatics. 2022 Jan 27;38(4):1165-1167. doi: 10.1093/bioinformatics/btab722.
8
Multi-omic integration by machine learning (MIMaL).基于机器学习的多组学整合 (MIMaL)。
Bioinformatics. 2022 Oct 31;38(21):4908-4918. doi: 10.1093/bioinformatics/btac631.

本文引用的文献

3
Unsupervised discovery of phenotype-specific multi-omics networks.无监督发现表型特异性多组学网络。
Bioinformatics. 2019 Nov 1;35(21):4336-4343. doi: 10.1093/bioinformatics/btz226.
6
p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression.p53 抑制甲羟戊酸途径以介导肿瘤抑制。
Cell. 2019 Jan 24;176(3):564-580.e19. doi: 10.1016/j.cell.2018.11.011. Epub 2018 Dec 20.
10
The discordant method: a novel approach for differential correlation.不一致方法:一种用于差异相关性分析的新方法。
Bioinformatics. 2016 Mar 1;32(5):690-6. doi: 10.1093/bioinformatics/btv633. Epub 2015 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验