Dixon Holly M, Armstrong Georgina, Barton Michael, Bergmann Alan J, Bondy Melissa, Halbleib Mary L, Hamilton Winifred, Haynes Erin, Herbstman Julie, Hoffman Peter, Jepson Paul, Kile Molly L, Kincl Laurel, Laurienti Paul J, North Paula, Paulik L Blair, Petrosino Joe, Points Gary L, Poutasse Carolyn M, Rohlman Diana, Scott Richard P, Smith Brian, Tidwell Lane G, Walker Cheryl, Waters Katrina M, Anderson Kim A
Food Safety and Environmental Stewardship Program, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
R Soc Open Sci. 2019 Feb 6;6(2):181836. doi: 10.1098/rsos.181836. eCollection 2019 Feb.
To assess differences and trends in personal chemical exposure, volunteers from 14 communities in Africa (Senegal, South Africa), North America (United States (U.S.)) and South America (Peru) wore 262 silicone wristbands. We analysed wristband extracts for 1530 unique chemicals, resulting in 400 860 chemical data points. The number of chemical detections ranged from 4 to 43 per wristband, with 191 different chemicals detected, and 1339 chemicals were not detected in any wristband. No two wristbands had identical chemical detections. We detected 13 potential endocrine disrupting chemicals in over 50% of all wristbands and found 36 chemicals in common between chemicals detected in three geographical wristband groups (Africa, North America and South America). U.S. children (less than or equal to 11 years) had the highest percentage of flame retardant detections compared with all other participants. Wristbands worn in Texas post-Hurricane Harvey had the highest mean number of chemical detections (28) compared with other study locations (10-25). Consumer product-related chemicals and phthalates were a high percentage of chemical detections across all study locations (36-53% and 18-42%, respectively). Chemical exposures varied among individuals; however, many individuals were exposed to similar chemical mixtures. Our exploratory investigation uncovered personal chemical exposure trends that can help prioritize certain mixtures and chemical classes for future studies.
为评估个人化学暴露的差异和趋势,来自非洲(塞内加尔、南非)、北美洲(美国)和南美洲(秘鲁)14个社区的志愿者佩戴了262个硅胶腕带。我们分析了腕带提取物中的1530种独特化学物质,得到了400860个化学数据点。每个腕带检测到的化学物质数量从4种到43种不等,共检测到191种不同的化学物质,有1339种化学物质在任何腕带中都未检测到。没有两个腕带的化学物质检测结果完全相同。我们在超过50%的所有腕带中检测到13种潜在的内分泌干扰化学物质,并在三个地理区域腕带组(非洲、北美洲和南美洲)检测到的化学物质中发现了36种共同的化学物质。与所有其他参与者相比,美国儿童(小于或等于11岁)的阻燃剂检测百分比最高。与其他研究地点(10 - 25种)相比,德克萨斯州在哈维飓风过后佩戴的腕带化学物质检测平均数最高(28种)。在所有研究地点,与消费品相关的化学物质和邻苯二甲酸盐在化学物质检测中占比很高(分别为36 - 53%和18 - 42%)。个体之间的化学暴露存在差异;然而,许多个体接触到相似的化学混合物。我们的探索性调查发现了个人化学暴露趋势,这有助于为未来研究确定某些混合物和化学类别进行优先排序。