Suppr超能文献

用于同时学习最优个体化治疗规则和亚组的组合交互树。

Composite interaction tree for simultaneous learning of optimal individualized treatment rules and subgroups.

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York.

Department of Psychiatry, Columbia University Medical Center, New York, New York.

出版信息

Stat Med. 2019 Jun 30;38(14):2632-2651. doi: 10.1002/sim.8105. Epub 2019 Mar 19.

Abstract

Treatment response heterogeneity has long been observed in patients affected by chronic diseases. Administering an individualized treatment rule (ITR) offers an opportunity to tailor treatment strategies according to patient-specific characteristics. Overly complex machine learning methods for estimating ITRs may produce treatment rules that have higher benefit but lack transparency and interpretability. In clinical practices, it is desirable to derive a simple and interpretable ITR while maintaining certain optimality that leads to improved benefit in subgroups of patients, if not on the overall sample. In this work, we propose a tree-based robust learning method to estimate optimal piecewise linear ITRs and identify subgroups of patients with a large benefit. We achieve these goals by simultaneously identifying qualitative and quantitative interactions through a tree model, referred to as the composite interaction tree (CITree). We show that it has improved performance compared to existing methods on both overall sample and subgroups via extensive simulation studies. Lastly, we fit CITree to Research Evaluating the Value of Augmenting Medication with Psychotherapy trial for treating patients with major depressive disorders, where we identified both qualitative and quantitative interactions and subgroups of patients with a large benefit.

摘要

治疗反应的异质性在慢性疾病患者中早已得到观察。采用个体化治疗规则(ITR)可以根据患者的具体特征定制治疗策略。对于估计 ITR 的过于复杂的机器学习方法可能会产生具有更高收益但缺乏透明度和可解释性的治疗规则。在临床实践中,期望获得简单且可解释的 ITR,同时保持一定的最优性,从而为患者亚组带来改善的收益,如果不是对整个样本的话。在这项工作中,我们提出了一种基于树的稳健学习方法来估计最优分段线性 ITR,并识别具有较大收益的患者亚组。我们通过树模型(称为复合交互树(CITree))同时识别定性和定量交互,从而实现了这些目标。我们通过广泛的模拟研究表明,它在整体样本和亚组方面的性能均优于现有方法。最后,我们将 CITree 拟合到 Research Evaluating the Value of Augmenting Medication with Psychotherapy 试验中,用于治疗患有重度抑郁症的患者,我们在其中识别了定性和定量交互以及具有较大收益的患者亚组。

相似文献

7
8
Estimating individualized treatment regimes from crossover designs.从交叉设计中估计个体化治疗方案。
Biometrics. 2020 Sep;76(3):778-788. doi: 10.1111/biom.13186. Epub 2019 Dec 19.
10

本文引用的文献

3
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
4
Recursive partitioning for heterogeneous causal effects.异质因果效应的递归划分
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60. doi: 10.1073/pnas.1510489113.
5
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验