Suppr超能文献

利用电子健康记录进行匹配学习以优化个性化治疗策略

Matched Learning for Optimizing Individualized Treatment Strategies Using Electronic Health Records.

作者信息

Wu Peng, Zeng Donglin, Wang Yuanjia

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032; (

Department of Biostatistics, University of North Carolina at Chapel Hill. (

出版信息

J Am Stat Assoc. 2020;115(529):380-392. doi: 10.1080/01621459.2018.1549050. Epub 2019 Apr 23.

Abstract

Current guidelines for treatment decision making largely rely on data from randomized controlled trials (RCTs) studying average treatment effects. They may be inadequate to make individualized treatment decisions in real-world settings. Large-scale electronic health records (EHR) provide opportunities to fulfill the goals of personalized medicine and learn individualized treatment rules (ITRs) depending on patient-specific characteristics from real-world patient data. In this work, we tackle challenges with EHRs and propose a machine learning approach based on matching (M-learning) to estimate optimal ITRs from EHRs. This new learning method performs matching instead of inverse probability weighting as commonly used in many existing methods for estimating ITRs to more accurately assess individuals' treatment responses to alternative treatments and alleviate confounding. Matching-based value functions are proposed to compare matched pairs under a unified framework, where various types of outcomes for measuring treatment response (including continuous, ordinal, and discrete outcomes) can easily be accommodated. We establish the Fisher consistency and convergence rate of M-learning. Through extensive simulation studies, we show that M-learning outperforms existing methods when propensity scores are misspecified or when unmeasured confounders are present in certain scenarios. Lastly, we apply M-learning to estimate optimal personalized second-line treatments for type 2 diabetes patients to achieve better glycemic control or reduce major complications using EHRs from New York Presbyterian Hospital.

摘要

当前的治疗决策指南很大程度上依赖于研究平均治疗效果的随机对照试验(RCT)数据。在现实环境中,这些指南可能不足以做出个性化的治疗决策。大规模电子健康记录(EHR)为实现精准医疗的目标提供了机会,并能根据真实世界患者数据中患者的特定特征学习个性化治疗规则(ITR)。在这项工作中,我们应对EHR带来的挑战,并提出一种基于匹配的机器学习方法(M学习),以从EHR中估计最优ITR。这种新的学习方法执行匹配操作,而不是像许多现有估计ITR的方法那样使用逆概率加权,以便更准确地评估个体对替代治疗的治疗反应并减轻混杂因素的影响。我们提出基于匹配的价值函数,以便在统一框架下比较匹配对,在该框架中,可以轻松纳入用于衡量治疗反应的各种类型的结果(包括连续、有序和离散结果)。我们确立了M学习的Fisher一致性和收敛速度。通过广泛的模拟研究,我们表明,当倾向得分指定错误或在某些情况下存在未测量的混杂因素时,M学习优于现有方法。最后我们应用M学习,利用纽约长老会医院的EHR估计2型糖尿病患者的最优个性化二线治疗方案,以实现更好的血糖控制或减少主要并发症。

相似文献

1
Matched Learning for Optimizing Individualized Treatment Strategies Using Electronic Health Records.
J Am Stat Assoc. 2020;115(529):380-392. doi: 10.1080/01621459.2018.1549050. Epub 2019 Apr 23.
2
Self-matched learning to construct treatment decision rules from electronic health records.
Stat Med. 2022 Jul 30;41(17):3434-3447. doi: 10.1002/sim.9426. Epub 2022 May 5.
3
Learning Personalized Treatment Rules from Electronic Health Records Using Topic Modeling Feature Extraction.
Proc Int Conf Data Sci Adv Anal. 2019 Oct;2019:392-402. doi: 10.1109/dsaa.2019.00054. Epub 2020 Jan 23.
4
On using electronic health records to improve optimal treatment rules in randomized trials.
Biometrics. 2020 Dec;76(4):1075-1086. doi: 10.1111/biom.13288. Epub 2020 May 14.
7
Transfer learning of individualized treatment rules from experimental to real-world data.
J Comput Graph Stat. 2023;32(3):1036-1045. doi: 10.1080/10618600.2022.2141752. Epub 2022 Nov 30.
8
Multi-Armed Angle-Based Direct Learning for Estimating Optimal Individualized Treatment Rules With Various Outcomes.
J Am Stat Assoc. 2020;115(530):678-691. doi: 10.1080/01621459.2018.1529597. Epub 2019 Apr 11.
9
Learning Optimal Individualized Treatment Rules from Electronic Health Record Data.
Proc (IEEE Int Conf Healthc Inform). 2016 Oct;2016:65-71. doi: 10.1109/ICHI.2016.13. Epub 2016 Dec 8.

引用本文的文献

1
M-Learning for Individual Treatment Rule With Survival Outcomes.
Stat Med. 2025 May;44(10-12):e70093. doi: 10.1002/sim.70093.
4
Contrast weighted learning for robust optimal treatment rule estimation.
Stat Med. 2022 Nov 30;41(27):5379-5394. doi: 10.1002/sim.9574. Epub 2022 Sep 14.
5
Self-matched learning to construct treatment decision rules from electronic health records.
Stat Med. 2022 Jul 30;41(17):3434-3447. doi: 10.1002/sim.9426. Epub 2022 May 5.
7
A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity.
J Am Stat Assoc. 2021;116(533):162-173. doi: 10.1080/01621459.2020.1783272. Epub 2020 Aug 4.
8
On using electronic health records to improve optimal treatment rules in randomized trials.
Biometrics. 2020 Dec;76(4):1075-1086. doi: 10.1111/biom.13288. Epub 2020 May 14.
9
Learning Personalized Treatment Rules from Electronic Health Records Using Topic Modeling Feature Extraction.
Proc Int Conf Data Sci Adv Anal. 2019 Oct;2019:392-402. doi: 10.1109/dsaa.2019.00054. Epub 2020 Jan 23.

本文引用的文献

1
Augmented outcome-weighted learning for estimating optimal dynamic treatment regimens.
Stat Med. 2018 Nov 20;37(26):3776-3788. doi: 10.1002/sim.7844. Epub 2018 Jun 5.
2
Doubly robust matching estimators for high dimensional confounding adjustment.
Biometrics. 2018 Dec;74(4):1171-1179. doi: 10.1111/biom.12887. Epub 2018 May 11.
3
Characterizing treatment pathways at scale using the OHDSI network.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7329-36. doi: 10.1073/pnas.1510502113. Epub 2016 Jun 6.
4
6
A new initiative on precision medicine.
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.
7
Combining biomarkers to optimize patient treatment recommendations.
Biometrics. 2014 Sep;70(3):695-707. doi: 10.1111/biom.12191. Epub 2014 May 30.
8
Standards of medical care in diabetes--2014.
Diabetes Care. 2014 Jan;37 Suppl 1:S14-80. doi: 10.2337/dc14-S014.
9
Distinguishing Selection Bias and Confounding Bias in Comparative Effectiveness Research.
Med Care. 2016 Apr;54(4):e23-9. doi: 10.1097/MLR.0000000000000011.
10
The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future.
Genet Med. 2013 Oct;15(10):761-71. doi: 10.1038/gim.2013.72. Epub 2013 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验