Suppr超能文献

超级识别者:从实验室到现实世界,再回到实验室。

Super-recognizers: From the lab to the world and back again.

机构信息

Applied Face Cognition Lab, University of Fribourg, Switzerland.

Psychology, Faculty of Natural Sciences, University of Stirling, UK.

出版信息

Br J Psychol. 2019 Aug;110(3):461-479. doi: 10.1111/bjop.12368. Epub 2019 Mar 20.

Abstract

The recent discovery of individuals with superior face processing ability has sparked considerable interest amongst cognitive scientists and practitioners alike. These 'Super-recognizers' (SRs) offer clues to the underlying processes responsible for high levels of face processing ability. It has been claimed that they can help make societies safer and fairer by improving accuracy of facial identity processing in real-world tasks, for example when identifying suspects from Closed Circuit Television or performing security-critical identity verification tasks. Here, we argue that the current understanding of superior face processing does not justify widespread interest in SR deployment: There are relatively few studies of SRs and no evidence that high accuracy on laboratory-based tests translates directly to operational deployment. Using simulated data, we show that modest accuracy benefits can be expected from deploying SRs on the basis of ideally calibrated laboratory tests. Attaining more substantial benefits will require greater levels of communication and collaboration between psychologists and practitioners. We propose that translational and reverse-translational approaches to knowledge development are critical to advance current understanding and to enable optimal deployment of SRs in society. Finally, we outline knowledge gaps that this approach can help address.

摘要

最近发现了一些具有出色面孔处理能力的个体,这引起了认知科学家和从业者的极大兴趣。这些“超级识别者”(SR)为负责高水平面孔处理能力的潜在过程提供了线索。据称,他们可以通过提高闭路电视中识别嫌疑人或执行安全关键身份验证任务等实际任务中对面部身份处理的准确性,从而使社会更加安全和公平。在这里,我们认为,目前对面孔处理能力的理解还不足以证明广泛关注 SR 的部署是合理的:对 SR 的研究相对较少,也没有证据表明基于实验室测试的高准确性可以直接转化为实际部署。我们使用模拟数据表明,基于理想校准的实验室测试部署 SR 可以预期适度的准确性收益。要获得更大的收益,心理学家和从业者之间需要进行更多的沟通和协作。我们提出,知识开发的转化和逆向转化方法对于提高当前的认识并使 SR 在社会中得到最佳部署至关重要。最后,我们概述了这种方法可以帮助解决的知识差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64c2/6767378/a3245bc0964c/BJOP-110-461-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验