文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氧化石墨烯与铂纳米颗粒的纳米复合物对结直肠癌Colo205、HT - 29、HTC - 116、SW480细胞系、肝癌HepG2细胞系、人乳腺癌MCF - 7细胞系、腺癌LNCaP细胞系及人宫颈癌Hela B细胞系的作用

Nanocomplexes of Graphene Oxide and Platinum Nanoparticles against Colorectal Cancer Colo205, HT-29, HTC-116, SW480, Liver Cancer HepG2, Human Breast Cancer MCF-7, and Adenocarcinoma LNCaP and Human Cervical Hela B Cell Lines.

作者信息

Kutwin Marta, Sawosz Ewa, Jaworski Sławomir, Wierzbicki Mateusz, Strojny Barbara, Grodzik Marta, Ewa Sosnowska Malwina, Trzaskowski Maciej, Chwalibog André

机构信息

Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.

Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland.

出版信息

Materials (Basel). 2019 Mar 19;12(6):909. doi: 10.3390/ma12060909.


DOI:10.3390/ma12060909
PMID:30893818
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6470683/
Abstract

Inefficient drug administration into cancer cells is related to the chemoresistance of cancer cells caused by genetic mutations including genes involved in drug transport, enzyme metabolism, and/or DNA damage repair. The objective of the present study was to evaluate the properties of platinum (NP-Pt), graphene oxide (GO), and the nanocomplex of GO functionalized with platinum nanoparticles (GO-NP-Pt) against several genetically, phenotypically, and metabolically different cancer cell lines: Colo205, HT-29, HTC-116, SW480, HepG2, MCF-7, LNCaP, and Hela B. The anticancer effects toward the cancer cell lines were evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT) and bromodeoxyuridine (BrdU) assays and measurements of cell apoptosis and morphology deformations. The NP-Pt and GO could effectively be introduced to cancer cells, but more effective delivery was observed after GO-NP-Pt treatment. The delivery of the GO-NP-Pt nanocomplex significantly decreased the viability of Colo 205 and HepG2 cells, but did not increase the cytotoxicity of other investigated cancer cells. The nanocomplex GO-NP-Pt also significantly increased the apoptosis of Colo 205 and HepG2 cancer cells. The obtained results suggest that the nanocomplex GO-NP-Pt is a remarkable nanostructure that can improve the delivery of Pt nanoparticles into cancer cells and has potential anticancer applications.

摘要

药物向癌细胞内的低效输送与癌细胞的化疗耐药性有关,这种耐药性由基因突变引起,包括参与药物转运、酶代谢和/或DNA损伤修复的基因。本研究的目的是评估铂(NP-Pt)、氧化石墨烯(GO)以及用铂纳米颗粒功能化的氧化石墨烯纳米复合物(GO-NP-Pt)对几种在基因、表型和代谢方面不同的癌细胞系的特性:Colo205、HT-29、HTC-116、SW480、HepG2、MCF-7、LNCaP和Hela B。通过2,3-双-(2-甲氧基-4-硝基-5-磺基苯基)-2H-四唑-5-甲酰苯胺盐(XTT)和溴脱氧尿苷(BrdU)测定以及细胞凋亡和形态变形测量来评估对癌细胞系的抗癌作用。NP-Pt和GO能够有效地进入癌细胞,但在GO-NP-Pt处理后观察到更有效的递送。GO-NP-Pt纳米复合物的递送显著降低了Colo 205和HepG2细胞的活力,但未增加其他所研究癌细胞的细胞毒性。纳米复合物GO-NP-Pt还显著增加了Colo 205和HepG2癌细胞的凋亡。所得结果表明,纳米复合物GO-NP-Pt是一种显著的纳米结构,能够改善铂纳米颗粒向癌细胞内的递送,具有潜在的抗癌应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/6ec29f1387ba/materials-12-00909-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/a38bdf09a487/materials-12-00909-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/dde577da92bb/materials-12-00909-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/d4269ec195eb/materials-12-00909-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/9d930e926818/materials-12-00909-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/6ec6ef786dc2/materials-12-00909-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/6ec29f1387ba/materials-12-00909-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/a38bdf09a487/materials-12-00909-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/dde577da92bb/materials-12-00909-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/d4269ec195eb/materials-12-00909-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/9d930e926818/materials-12-00909-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/6ec6ef786dc2/materials-12-00909-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b4f/6470683/6ec29f1387ba/materials-12-00909-g008.jpg

相似文献

[1]
Nanocomplexes of Graphene Oxide and Platinum Nanoparticles against Colorectal Cancer Colo205, HT-29, HTC-116, SW480, Liver Cancer HepG2, Human Breast Cancer MCF-7, and Adenocarcinoma LNCaP and Human Cervical Hela B Cell Lines.

Materials (Basel). 2019-3-19

[2]
Graphene Oxide⁻Platinum Nanoparticle Nanocomposites: A Suitable Biocompatible Therapeutic Agent for Prostate Cancer.

Polymers (Basel). 2019-4-23

[3]
Three Pt-Pt Complexes with Donor-acceptor Feature: Anticancer Activity, DNA Binding Studies and Molecular Docking Simulation.

Anticancer Agents Med Chem. 2019

[4]
Gold-Decorated Platinum and Palladium Nanoparticles as Modern Nanocomplexes to Improve the Effectiveness of Simulated Anticancer Proton Therapy.

Pharmaceutics. 2021-10-18

[5]
Homo- and heteroleptic Pt(II) complexes of ONN donor hydrazone and 4-picoline: A synthetic, structural and detailed mechanistic anticancer investigation.

Eur J Med Chem. 2017-11-26

[6]
ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity.

Colloids Surf B Biointerfaces. 2014-5-1

[7]
Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles.

Proc Natl Acad Sci U S A. 2008-11-11

[8]
DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles.

Nanomedicine (Lond). 2010-1

[9]
Aminated Graphene Oxide as a Potential New Therapy for Colorectal Cancer.

Oxid Med Cell Longev. 2019-3-20

[10]
Room temperature reduction of graphene oxide by formic acid catalyzed by platinum nanoparticles.

J Nanosci Nanotechnol. 2013-4

引用本文的文献

[1]
Improving the Effect of Cancer Cells Irradiation with X-rays and High-Energy Protons Using Bimetallic Palladium-Platinum Nanoparticles with Various Nanostructures.

Cancers (Basel). 2022-11-29

[2]
Functionalized Platinum Nanoparticles with Biomedical Applications.

Int J Mol Sci. 2022-8-20

[3]
Platinum Nanoparticles in Biomedicine: Preparation, Anti-Cancer Activity, and Drug Delivery Vehicles.

Front Pharmacol. 2022-2-23

[4]
MicroRNA Delivery by Graphene-Based Complexes into Glioblastoma Cells.

Molecules. 2021-9-25

[5]
Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies.

J Nanobiotechnology. 2021-7-15

[6]
Fancy-Shaped Gold-Platinum Nanocauliflowers for Improved Proton Irradiation Effect on Colon Cancer Cells.

Int J Mol Sci. 2020-12-17

[7]
Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization.

Front Mol Biosci. 2020-11-26

[8]
Amination of Graphene Oxide Leads to Increased Cytotoxicity in Hepatocellular Carcinoma Cells.

Int J Mol Sci. 2020-3-31

[9]
Kaolin alleviates the toxicity of graphene oxide for mammalian cells.

Medchemcomm. 2019-6-10

[10]
Tangeretin-Assisted Platinum Nanoparticles Enhance the Apoptotic Properties of Doxorubicin: Combination Therapy for Osteosarcoma Treatment.

Nanomaterials (Basel). 2019-7-29

本文引用的文献

[1]
Biodistribution and Toxicity of Micellar Platinum Nanoparticles in Mice via Intravenous Administration.

Nanomaterials (Basel). 2018-6-7

[2]
Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry.

Mutagenesis. 2018-2-24

[3]
Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy.

Int J Mol Sci. 2018-3-1

[4]
Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme.

Arch Med Sci. 2017-10

[5]
Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis.

Integr Med Res. 2017-6

[6]
Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment.

PLoS One. 2017-5-31

[7]
Interactions of Graphene Oxide with Model Cell Membranes: Probing Nanoparticle Attachment and Lipid Bilayer Disruption.

Langmuir. 2015-11-10

[8]
Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats.

Nanoscale Res Lett. 2015-12

[9]
In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma.

Int J Nanomedicine. 2015-2-25

[10]
Insight into nanoparticle cellular uptake and intracellular targeting.

J Control Release. 2014-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索