Suppr超能文献

脑网络分析:多元分析方法综述。

Brain Network Analysis: A Review on Multivariate Analytical Methods.

机构信息

Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

Department of Radiology and Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

出版信息

Brain Connect. 2023 Mar;13(2):64-79. doi: 10.1089/brain.2022.0007. Epub 2022 Oct 31.

Abstract

Despite the explosive growth of neuroimaging studies aimed at analyzing the brain as a complex system, critical methodological gaps remain to be addressed. Most tools currently used for analyzing network data of the brain are univariate in nature and are based on assumptions borne out of previous techniques not directly related to the big and complex data of the brain. Although graph-based methods have shown great promise, the development of principled multivariate models to address inherent limitations of graph-based methods, such as their dependence on network size and degree distributions, and to allow assessing the effects of multiple phenotypes on the brain and simulating brain networks has largely lagged behind. Although some studies have been made in developing multivariate frameworks to fill this gap, in the absence of a "gold-standard" method or guidelines, choosing the most appropriate method for each study can be another critical challenge for investigators in this multidisciplinary field. Here, we briefly introduce important multivariate methods for brain network analyses in two main categories: data-driven and model-based methods. We discuss whether/how such methods are suited for examining connectivity (edge-level), topology (system-level), or both. This review will aid in choosing an appropriate multivariate method with respect to variables such as network type, number of subjects and brain regions included, and the interest in connectivity, topology, or both. This review is aimed to be accessible to investigators from different backgrounds, with a focus on applications in brain network studies, though the methods may be applicable in other areas too. Impact statement As the U.S. National Institute of Health notes, the rich biomedical data can greatly improve our knowledge of human health if new analytical tools are developed, and their applications are broadly disseminated. A major challenge in analyzing the brain as a complex system is about developing parsimonious multivariate methods, and particularly choosing the most appropriate one among the existing methods with respect to the study variables in this multidisciplinary field. This study provides a review on the most important multivariate methods to aid in helping the most appropriate ones with respect to the desired variables for each study.

摘要

尽管旨在分析大脑这一复杂系统的神经影像学研究呈爆炸式增长,但仍存在一些关键的方法学差距需要解决。目前用于分析大脑网络数据的大多数工具本质上都是单变量的,并且基于与大脑大数据和复杂数据没有直接关系的先前技术的假设。尽管基于图的方法显示出了巨大的潜力,但开发原则上的多变量模型来解决基于图的方法的固有局限性,例如它们对网络大小和度分布的依赖性,并允许评估多个表型对大脑的影响和模拟大脑网络,在很大程度上落后了。尽管已经有一些研究致力于开发多变量框架来填补这一空白,但在缺乏“黄金标准”方法或准则的情况下,为每个研究选择最合适的方法可能是该多学科领域研究人员面临的另一个关键挑战。在这里,我们简要介绍了两大类主要的大脑网络分析的多变量方法:数据驱动和基于模型的方法。我们讨论了这些方法是否适合于检查连接(边缘水平)、拓扑(系统水平)或两者兼而有之。本综述将有助于根据网络类型、包含的被试和脑区数量以及对连接、拓扑或两者的兴趣等变量选择合适的多变量方法。本综述旨在为来自不同背景的研究人员提供帮助,重点是在大脑网络研究中的应用,尽管这些方法也可能适用于其他领域。

影响陈述

正如美国国立卫生研究院所指出的,如果开发新的分析工具并广泛传播其应用,丰富的生物医学数据将极大地提高我们对人类健康的认识。作为一个复杂系统来分析大脑的一个主要挑战是开发简约的多变量方法,特别是在这个多学科领域中,针对每个研究的研究变量选择最合适的现有方法之一。本研究综述了最重要的多变量方法,以帮助针对每个研究的期望变量选择最合适的方法。

相似文献

1
Brain Network Analysis: A Review on Multivariate Analytical Methods.脑网络分析:多元分析方法综述。
Brain Connect. 2023 Mar;13(2):64-79. doi: 10.1089/brain.2022.0007. Epub 2022 Oct 31.
2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
A MATLAB toolbox for multivariate analysis of brain networks.一个用于脑网络的多元分析的 MATLAB 工具箱。
Hum Brain Mapp. 2019 Jan;40(1):175-186. doi: 10.1002/hbm.24363. Epub 2018 Sep 5.
9
A mixed-modeling framework for whole-brain dynamic network analysis.用于全脑动态网络分析的混合建模框架。
Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.
10

本文引用的文献

2
The default mode network in cognition: a topographical perspective.认知中的默认模式网络:一种地形学视角。
Nat Rev Neurosci. 2021 Aug;22(8):503-513. doi: 10.1038/s41583-021-00474-4. Epub 2021 Jul 5.
3
Multivariate Brain Functional Connectivity Through Regularized Estimators.基于正则化估计器的多元脑功能连接性
Front Neurosci. 2020 Dec 8;14:569540. doi: 10.3389/fnins.2020.569540. eCollection 2020.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验